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Abstract

This paper presents the full proof of concept of a system
for capturing the light field of an object. It is based on a
single high resolution camera that is moved all around the
object on a cable-driven end-effector. The main advantages
of this system are its scalability and low interference with
scene lighting. The camera is accurately positioned along
hemispheric trajectories by observing target features. From
the set of gathered images, the visual hull is extracted and
can be used as an approximate geometry for mapping a sur-
face light field. The paper describes the acquisition system
as well as the modeling process. The ability of the system
to produce models is validated with four different objects
whose sizes range from 20 cm to 3 m.

1. Introduction

Appearance modeling for a large variety of object types
is currently a challenge that motivates intense research. One
obvious application is the realistic real-time visualization of
objects under free viewpoint selection. For this purpose, the
appearance is captured, modeled and rendered while taking
into account light rays arising from all of the viewpoints.
One well-known approach consists in capturing a light field
of the object [12]. The light field can be further compressed
by capturing an approximate geometry of the object before
encoding the set of rays that emerge from the object’s sur-
face [6, 16]. In order to produce such a model, a large quan-
tity of images must be captured from all of the viewpoints
surrounding an object.

Capturing and processing all of these images essentially
requires the automation of the whole acquisition and mod-
eling process. Several systems have thus been implemented
in the last 15 years, including [3, 9]. For moving or de-
forming objects, a large set of cameras is typically used [9].

Figure 1. The cable-driven parallel mechanism in
action. The end-effector holds a SLR camera that
is used to acquire images of the object from mul-
tiple viewpoints. The end-effector is suspended
by six cables passing through pulleys attached to
the walls of the room. The object is surrounded by
a green enclosure to allow easy extraction of the
object silhouette as well as precise positioning.

However, when the object is static, it is advantageous to use
a robotic arm supporting a camera in the end-effector. This
makes it possible to capture a dense set of views for model-
ing. For more flexibility, it is also possible to complement
with a turntable as long as the light sources remain rigid
with the object. All of these systems differ in their intrinsic
precisions and flexibility to capture objects of various sizes.

In this paper, we propose an acquisition and modeling
system based on a cable-driven parallel mechanism for po-
sitioning and orienting a camera. One implementation of
the acquisition system is illustrated in Fig. 1 where one can
see the camera module that moves around the object. There
are significant advantages for developing such a system. In-
deed, cable-driven robots can reach a large workspace such
as a quasi-hemisphere around the object. More importantly,



they are highly scalable, thus enabling them to capture ob-
jects of various sizes ranging from a few centimeters to sev-
eral meters. Moreover, the cables do not interfere signifi-
cantly with the environment lighting.

Cable-driven cameras are commercially available but are
not well suited for object modeling. Skycam [2] and Ca-
blecam [1] are two examples mainly dedicated to televi-
sion events. Major limitations of such devices are their
workspace which is mostly constrained in a plane and the
lack of accurate positioning.

In the next sections, a full proof of concept is described
and demonstrated from acquisition to rendering for objects
whose sizes range from 20 cm to 3 m. The robot includ-
ing the end-effector apparatus and its kinematic character-
istics are described in section 2. Although the robot can
be controlled and positioned accurately for planning trajec-
tories around the object, more accurate positioning is ob-
tained using photogrammetry. This is presented in section
3. In section 4, a passive appearance modeling approach is
described. Section 5 presents an evaluation of the system.

2. Description of the Cable-Driven Robot

In order to obtain the different viewpoints necessary for
building a 3D model, the camera is typically moved along
a hemispherical surface centered on the object, as shown in
Fig. 2. Spherical coordinates are used to define the position
of the mechanism in that workspace. Ideally, the camera
should also be oriented such that its optical axis intersects
with the center of the object for every photograph. Thus,
the mechanical device used to move the camera should be
able to reach such a workspace. The radius of the hemi-
sphere depends on the size of the digitized object and on
the settings of the camera. It is worth noting that the six de-
grees of freedom describing the workspace are coupled in
such a way that if two of them are specified (e.g. φ and θ),
the other four can be deduced. This greatly simplifies the
analysis and design of the mechanism.

A six-cable suspended robot [5] is adapted for this task.
The geometry of the mechanism is defined as the position
of the attachment points of the 6 cables. The cables are
attached to the camera platform (the end-effector) and pass
through pulleys attached to the walls of the room. These
points on the wall are referred to as departure points. The
challenge in the design is that this workspace involves
relatively large orientation changes (±90◦ tilt) as well as
large translations.

2.1. Kinematic Optimization

Physically, the goal of the optimization process is to
obtain a mechanism with a static equilibrium workspace
as close as possible to the desired workspace, without the
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Figure 2. Workspace of the mechanism around
the object. The front portion has been removed
for clarity.

cables interfering with each other or with the end-effector.
In a static equilibrium workspace, all cables are in tension.
In the proposed system, the camera will be moved slowly
from one pose to the next, thus the static equilibrium
workspace defined in [14] is considered. The departure
points are constrained to lie on the walls of the room. To
avoid interference between the cables and the camera or
the electronic devices on the end-effector, the attachment
points are constrained to lie on a circle with a variable ra-
dius r between 0 and 25 cm. Their positions are optimized
under these constraints following a procedure similar to the
one described in [4]. For a given robot configuration, the
objective function to be minimized is

Φ =
π/2∑
φ=0

2π∑
θ=0

−s(φ, θ) + c(φ, θ) (1)

which is the sum of two penalty terms over the workspace.
In this equation, s(φ, θ) = 1 if the mechanism can be
in static equilibrium at the pose defined by coordinates
φ and θ. If not, s(φ, θ) = 0. Similarly, c(φ, θ) = 1 if a
cable crossing occurs between two steps of the procedure.
Otherwise, c(φ, θ) = 0.

In order to verify that the robot is in static equilibrium,
the following equations are defined,[

w1 w2 · · · w6

]
t = −r, (2)

Wt = −r (3)

where t is a vector containing all of the cable tensions and r
is the wrench applied by gravity to the mechanism. Vector
wi is the unit wrench vector of cable i which can be written
as

wi =
[

ui
OQE

Ebi × ui

]
(4)

where O and E refer to the fixed reference frame RO and
the frame RE attached to the end-effector, respectively.



5  

3 & 6

2 & 5

1 & 4  

4  

3  

6  

2  

1 

Central axis

Figure 3. Illustration of the attachment points of
the system. Top: Departure points 0ai. Bottom:
End-effector points Ebi.

Moreover, Ebi is the position vector of the attachment point
of cable i on the end-effector expressed in RE , OQE is the
rotation matrix from RO to RE , and ui is a unit vector
along cable i originating from the end-effector. It is ex-
pressed by

ui =
ai − bi

‖ai − bi‖
, (5)

with bi equal to bi = cE + OQE
Ebi. In this equation, ai is

the position vector of the attachment point of cable i on the
wall expressed in RO, and cE is the position vector of the
origin of RE expressed in RO. The vectors with no prefix
are expressed in RO. The wrench exerted by gravity on
the end-effector r can be balanced by the mechanism if the
tension vector t that satisfies (3) also satisfies the condition:
t � 0. In this case, it means that all of the cables must be in
tension to balance the wrench and s(φ, θ) = 1.

With regards to the objective function, the best archi-
tecture that was found encompasses 3 different attachment
points on the end-effector and could reach the complete
translational workspace with a maximum end-effector
tilt angle of 30◦, which is far from the ideal 90◦. This
architecture is illustrated in Fig. 3. To avoid the orientation
limitation, an actuated device could be embarked on the
platform to orient the camera. This would have the draw-
back of adding weight and complexity at the end-effector.
For the sake of simplicity, minor modifications were made
to the concept without adding a complete level of actuation
on the end-effector. These modifications are detailed in
section 2.3.

The robot is controlled using joint coordinates. For a
desired Cartesian pose OTE , the cable lengths are calcu-
lated and then actuated without real-time feedback on the
actual pose of the end-effector. The cable lengths are cal-
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Figure 4. a) End-effector apparatus. b) Polar tra-
jectory showing camera offset angle. The rays in-
dicate the larger field of view of the camera. The
arrow represents the optical axis of the camera.

culated using the geometric parameters of the robot ξk, a
set of variables that comprises all of the attachment points.
The attachment points on the end-effector Ebi are measured
directly. The departure points on the wall, ai, can be cali-
brated using a photogrammetric approach or directly mea-
sured with a theodolite. Although both approaches were
tested, this will not be discussed any further in this paper.
Errors on the geometric model can result in errors in the
pose of the camera. However, since it is an important issue
for appearance modeling, the precise pose of the camera
will be obtained by photogrammetry. For this reason, inac-
curacy in the robot pose does not affect the modeling of the
object.

2.2. Trajectory definition

The system scans over a hemisphere. For a given az-
imuth angle, the mechanism goes step by step from φ = 0
to φ = 90◦. At each step, the mechanism stops smoothly,
stabilizes and a picture is taken. Stability measures for such
trajectories are presented in section 5.1. At the end of a
polar trajectory, the azimuth angle is incremented and the
mechanism is moved back up. This continues until the com-
plete hemisphere shown in Fig. 2 has been covered. A part
of the trajectory and a more detailed view of the device can
be seen in the video extension 1 on the website of the au-
thors 1. Since the desired orientation is not achievable, in
the next section we show how the tilt angle φt of the end-
effector can be made to differ from the polar angle φ.

2.3. End-effector apparatus

The mechanism can tilt the end-effector to a maximum
angle of 30◦, which is insufficient for the application. In-
stead of having the optical axis of the camera coincide with
the central axis of the end-effector, the axis is offset. The tilt

1http://vision.gel.ulaval.ca/∼vision3d



Figure 5. Matrix code representing the value 46.
The view at the right shows the pattern used to
determine orientation (dashed L) and the weight
of each bit. Dark and light color circles indicate a
value of 0 and 1 respectively.

angle φt of the end-effector is chosen to be different from
the polar angle φ such that:

φt = fφ + δ. (6)

The trajectory can then be adapted so that the tilt of the end-
effector is −30◦ when φ is 0◦, and 30◦ when φ corresponds
to 90◦. It varies linearly between both extremes so variables
f = 2

3 and δ = −π
6 in eq. 6. This is illustrated in Fig. 4 b).

To ensure that the camera takes portrait pictures for
all azimuth angles, its rotation angle needs to be adapted
around the central axis of the end-effector. To achieve this,
the implemented device shown in Fig. 4 a) exploits gravity
to passively orient the camera around that axis. To do so,
the camera is installed on a flat bearing whose rotation axis
coincides with the central axis of the end-effector. The part
of the end-effector that is attached to the cables does not ro-
tate and is equipped with a large internal gear. A solenoid
is installed on the rotating part. While unactuated, it blocks
the gear and hinders rotation of the camera. When it is actu-
ated, the camera can rotate freely around the end-effector’s
central axis. Since the center of mass of the rotating part
is not on the rotation axis, the camera will rotate under the
action of gravity when the solenoid is activated and the end-
effector is tilted. This orientation change is undergone each
time that φ reaches a maximum. A demonstration of the
orienting device is shown in the video extension 1.

The camera mounted on the end-effector is a 6.3
megapixel Canon Rebel 300D with an extended battery
pack to provide an autonomy of approximately one thou-
sand pictures. The camera and solenoid are remotely con-
trolled by a base station via a RS-232 wireless link. The
data stream is decoded by a µcontroller which activates the
camera or the solenoid depending on the requested com-
mand. The camera was adapted so that it can be activated by
the µcontroller. The total weight of the end-effector includ-
ing the camera, lens, batteries, electronics, and end-effector
components is 5.75kg.

3. Data Processing and Object Modeling

At the end of the acquisition, images are transferred to a
computer and the offline modeling process begins.

3.1. Camera Pose Computation

The camera’s pose is obtained by observation of auto-
matically recognizable patterns scattered around the object.
A model of the 3-D coordinates of these targets is computed
from the set of acquired images along the trajectory. Given
the model of target coordinates, one can compute the im-
age x of a known 3-D point X with the classical projection
model [8]:

 λu
λv
λ


︸ ︷︷ ︸

x

=

 sf 0 u0 0
0 f v0 0
0 0 1 0


︸ ︷︷ ︸

K

[
Q c
0 1

]
︸ ︷︷ ︸
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M
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y
z
1


︸ ︷︷ ︸

X

(7)

This projection model is augmented with a nonlinear lens
distortion model expressing corrected image coordinates ac

in terms of their distorted counterparts ad:

ac = ad + FD(ad, δ). (8)

It is shown in [8] how to invert the distortion model and
obtain ad from ac.

For positioning, a target pattern that is easy to detect and
identify has been devised in the form of matrix codes. It is
shown in Fig. 5. Its circular features’ image coordinates are
accurately measured using [13].

Matrix code targets are placed around the object of inter-
est such that at least five are visible from each point of view.
The cable robot then displaces the camera around this static
scene, taking a high number of pictures. The problem is
then to estimate each camera pose as well as the 3-D target
coordinates. This is done using iterated bundle adjustment
(see [7] for instance). The intrinsic parameters of the cam-
era can be calibrated beforehand. Although not essential for
visualisation purpose, the scale factor of the scene can also
be obtained from the target pattern design.

The 3-D model of the positioning targets is computed
from a subset of the images which includes typically 100
to 150 images. Once a model of the 3-D coordinates of
the target features has been built, any camera pose from the
whole set of images can be quickly computed by using the
direct linear transform [7]. This well-known method com-
putes an estimate of the 3 × 4 projection matrix M. From
this, the pose T is extracted by premultiplying by the inverse
of known intrinsics matrix K. Note that this estimate does
not respect the constraints associated with a rotation matrix.
It is instead used as initialization for an iterative algorithm
minimizing the reprojection error.



3.2. Image segmentation

This system requires two steps of extraction from im-
ages. First, target silhouettes are extracted for pose com-
putation and then, the object silhouette is extracted for
modeling purposes. The extraction of a silhouette S re-
quires a low level segmentation approach. Considering the
observation of an RGB vector at a given pixel, x′, the
binary classification process consists in choosing the la-
bel Y ∈ {0 = background, 1 = foreground} maximiz-
ing P (Y |x′). In this case, color keying is prioritized over
background subtraction techniques since camera position-
ing can hardly be reproduced.

Due to lighting conditions, cast shadows and paint color
sprayed non uniformly, the acquisition enclosure shows
many shades of green. To model this complex samples dis-
tribution in the RGB space, a non parametric approach,
such as the k-nearest neighbors algorithm, is well suited.
This approach requires a training set where samples of both
categories are correctly labeled. The background training
set is built by taking pictures of the empty enclosure from
different point of views before beginning the acquisition.
Since the object’s color properties are a priori unknown,
its training set was generated following a uniform distri-
bution within the RGB cube. To keep the ratio of back-
ground/foreground pixels observed in the images, the num-
ber of foreground samples was set to an approximate value
of 20% of the number of background samples.

The nearest neighbor approach subsumes that the label
associated with an unknown sample (x′) is very likely to
be the same label as the closest training sample (x) in the
RGB space, P (Y |x′) ≈ P (Y |x). To reduce the training
sample influence over the decision boundaries in the RGB
space, that hypothesis leads to a k-nearest neighbors formu-
lation where, for a given number of neighbors k,

P (Y = 1|x′) =
1
k

∑
x∈Nx′

Y (x). (9)

In the equation, Nx′ is the neighborhood of x′. If P (Y =
1|x′) > 0.5, the pixel is labeled as foreground. The choice
of k was set empirically to give the best overall results over
a small number of pictures. Fig. 6 b) shows an extracted
object’s silhouette.

Based on the same approach, matrix code targets are
extracted for camera positioning. In this case, the two
training sets are respectively given by RGB samples
from the enclosure and by RGB samples from the targets
themselves. Extracted targets are shown in Fig. 6 c). It
is worth noting that small artifacts that appear outside the
object’s silhouette will be automatically eliminated at the
visual hull reconstruction stage.

(a) (b) (c)

Figure 6. a) Captured image, b) Extracted object’s
silhouette, c) Extracted calibration targets, in all
cases without post-processing.

4. Passive Appearance Modeling

The present system relies on a hybrid approach between
geometry-based and image-based modeling: it uses an ap-
proximate geometry of the object and compensates for its
imprecision with view interpolation. View interpolation is
further exploited to enable the object to be modeled with-
out assuming its reflectance properties. The approximate
geometry used here is based on the visual hull [11]. It will
be used to parameterize a surface light field [16] that im-
plements the required view interpolation. These stages are
described next.

Let Si be the ith image silhouette and Mi the correspond-
ing camera projection matrix. The generalized cone Ci gen-
erated by the silhouette Si is defined as the set of points that
verifies Ci =

{
X ∈ R3|MiX ∈ Si

}
. The visual hull V can

therefore be computed by the following cone intersections :

V =
⋂

i=1,...,n

Ci =
{
X ∈ R3|MiX ∈ Si,∀i

}
. (10)

A partial result of this operation on two images is il-
lustrated in Fig. 7. Cone intersections are computed using
implicit functions since the intersection φ3(X) of two sets
expressed by two implicit functions φ1(X) and φ2(X) is
φ3(X) = max(φ1(X), φ2(X)), which is easily computed.

Every generalized cone Ci is thus represented by an im-
plicit function φi(X) where X ∈ Γ and Γ ⊂ R3 is a region
of space known to contain the object. For computational
purposes, Γ is discretized on a regular three-dimensional
grid of points Xk.

An efficient way to compute φi(Xk) is to set the value at
a gridpoint Xk by projecting Xk in an image, transformed
into a 2D signed distance field, si(x), of the boundary of
the silhouette Si, thus φi(Xk) = si(MiXk). This is simi-
lar to [10] and illustrated in Fig. 7. The implicit functions
φi(X) are therefore built from the backprojection of 2D



Figure 7. The visual hull is obtained by intersect-
ing all generalized cones corresponding to the ob-
ject’s silhouette in each image. Two generalized
cones are shown with their corresponding dis-
tance fields. Silhouette contours are marked in
blue and green.

signed distance fields. An approximation of the intersec-
tion of every generalized cone Ci is simply maxi(φi(X))
and thus the implicit function representing the visual hull V
is φ(Xk) = maxi(φi(Xk)). A mesh K0 of the boundary of
the visual hull is needed for the surface light field and it can
be generated by finding the zero level set of φ(Xk) using
marching cubes.

A surface light field parameterized on the visual hull al-
lows rendering from any desired view of the object. Sim-
plifying, surface light fields are an extension of view-
dependent texture mapping. The surface used in our case is
the mesh K0 of the visual hull. Therefore, the surface light
field is a function L : K0 × S2 → RGB where S2 is the
sphere of unit vectors in R3 and the radiance is described by
points in R3 corresponding to RGB triples. The Light Field
Mapping software [6] was used to store and render the sur-
face light fields of our models. The quality of the rendered
light field can be improved by refining the visual hull us-
ing multi-view techniques [15] to reduce aliasing artefacts
at rendering.

5. Experimental validation

This section validates the operation of the cable-driven
mechanism. To begin with, stability and repeatability ex-
periments are shown. Then, models that were built from
four different objects are presented and their quality is dis-
cussed.

5.1. End-effector Stability

Since both the 3D modeling and the camera calibration
processes use the same dataset, both the object and the po-
sitioning targets must be on focus in images. This requires
a large depth of field obtained by using a small lens aper-
ture combined with a long exposure. This means that the
robot, at each point of the trajectory, must be stable to avoid
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Figure 8. Target position variation (in pixels) after
completion of the robot command.

blurred images.
An experiment has been conducted to assess the stabil-

ity of the robot. The SLR camera was replaced by a Sony 3
CCD progressive scan video camera on the end-effector. On
the ground, a 15 cm diameter white sphere has been placed
over a contrasting background. The experiment consisted
in filming the sphere at a distance of 1.5 m while doing sev-
eral stop and go trajectories with the robot. The perceived
movement of the robot has been obtained by computing the
displacement of the sphere target between each frame of
the video sequence. Fig. 8 shows the decay of the move-
ment with time after command termination. A precise po-
sitioning algorithm has been used for the sphere detection
and estimation [13]. This result is typical along the trajec-
tory and suggests that after a 7 second delay, the robot is
stable enough to capture sharp images of the scene. Typi-
cally, between each camera pose, the displacement requires
5 seconds and then the system pauses for 7 seconds for sta-
bilization before capturing an image. Exposure times up
to 2 seconds are applied. Thus, approximately 14 sec. is
required for each image.

5.2. Repeatability

The end-effector gear is blocked for the repeatability test.
The robot stabilizes at four different poses 25 times. The
four poses are at the corner of a 3m square. Images are
captured and the poses are precisely determined using the
photogrammetric method. Mean positions and orientations
are calculated for each pose. The distance and orientation to
the means are summarized in Fig. 9. From this figure, one
can see that the repeatability is below the 6cm in position
and below 7◦ in orientation. This is sufficient for the appli-
cation, especially considering that the poses are precisely
measured using the camera.

5.3. Experimental setup

The robot is installed in a room of approximately 10 m
wide, 12 m long and 6 m high. The object is surrounded
by an enclosure made of eight rigid panels painted in green
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Table 1. Object dimensions and acquisition pa-
rameters.

Name Object size (m) # of photos Radii

Snowmobile 2.8 x 1.0 x 1.3 600 2.7m

Deer head 0.6 x 0.8 x 1.0 105 1.5m

Bust 0.7 x 0.6 x 0.5 212 1.5m

Small statue 0.1 x 0.1 x 0.2 242 0.8m

as shown in Fig. 1. The overall enclosure radius is approxi-
mately 3 m. The matrix code positioning targets are printed
in dark green on letter format light green paperboard and
they are distributed randomly over the entire enclosure. An
ink jet printer is used to avoid the specularity of laser print-
ing that could cause a problem in the color keying. Within
the enclosure, each object is fixed on a pedestal that facili-
tates view collection for larger φ angles.

5.4. Objects modeling results

Four different objects acquired with the proposed sys-
tem are presented. They were selected to show the variety
of objects that can be captured and especially the scalability
of the system. Table 1 summarizes the experimental condi-
tions of each acquisition. The number of images acquired
for each object varies from 105 to 600 and the radius of the
trajectories varies from 0.8 m to 2.7 m. Fig. 10 shows the re-
sult of the modeling process. For each object, the first image
represents the mesh computed as a geometry approximation
and the two others are rendered views of the final 3D model.
To build the visual hull of each object, the bounding box
was divided into 1503 voxels. From this volumetric repre-
sentation, a mesh was extracted. Every step of the modeling
process are shown in the video extension 2.

The first object presented is a snowmobile. With its
length of nearly 3 m, this is the largest object that can be
acquired with the system. A 10 mm focal length lens pro-
viding a field of view of (Θv = 73.6◦, Θh = 96.6◦) was
used to allow the entire snowmobile to be seen as well as
a sufficient number of targets. This object is particularly
interesting with respect to its size as well as its shininess.

The deer head and the bust of the Cardinal of Richelieu
are two medium sized objects. As shown in Fig. 10 d), the
wood of the deer exhibits a small structure which demon-
strates the accuracy of positioning. Another interesting
characteristic of this model is the captured reflectance of
the fur. The bust of the Cardinal of Richelieu is also a chal-
lenging object because it exhibits complex reflectance prop-
erties. One can note the displacement of the specularities
on the forehead of the bust in Fig. 10 h) and i). For these
smaller objects, an 18 mm focal lens was used. This leads
to a field of view of (Θv = 46.8◦, Θh = 67.07◦).

The fourth object is a dark small statue of less than 20
cm. For such a small object, the density of targets was in-
creased around the object to allow better camera position-
ing. The resulting model can be seen in Fig. 10 k) and l).

One problem that arose in the experiments is the color
bleeding effect of the background on the object. This caused
a segmentation artifact that could not be corrected automat-
ically on the snowmobile model. Actually, this can be ob-
served at the tip of the left ski of the snowmobile. Color
bleeding also affects the appearance of the models. For
this purpose, image pixels that are in the same region of the
color space as the green enclosure have been desaturated.

6. Conclusion

We have presented the full proof of concept of a cable
robot system for automatically acquiring hundreds of cal-
ibrated images around objects of various sizes on a hemi-
spherical trajectory. These calibrated images allow a sur-
face light field to be built on the visual hull of the object
and the resulting model is used for free viewpoint render-
ing. The extraction of silhouettes of the object can be fur-
ther improved to avoid holes or missing parts on the visual
hull. Moreover, the overall quality can be increased by us-
ing two cameras with lenses of different focal length. One
camera can be pointed at the targets so as to position the
end-effector while the other can be used to collect better
pictures of the object. It is finally worth noting that this
type of system is relatively cheap and could be scaled up
for modeling objects of more than 10 m. For large systems,
the controller will be adapted to take into consideration the
elasticity of the cables.
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