
Training Subset Selection in Hourly Ontario Energy Price Forecasting using Time
Series Clustering-based Stratification
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Abstract

Training a given learning-based forecasting method to a satisfactory level of performance often requires a large dataset.
Indeed, any data-driven methods require having examples that are providing a satisfactory representation of what we
want to model to work properly. This often implies using large datasets to be sure that the phenomenon of interest is
properly sampled. However, learning from time series composed of too many samples can also be a problem, given that
the computational requirements of the learning algorithms can easily grow following a polynomial complexity according
to the training set size. In order to identify representative examples of a dataset, we are proposing a methodology
using clustering-based stratification of time series to select a training data subset. The principle for constructing a
representative sample set using this method consists in selecting heterogeneous instances picked from all the various
clusters composing the dataset. Results obtained show that with a small number of training examples, obtained through
the proposed clustering-based stratification, we can preserve the performance and improve the stability of models such as
artificial neural networks and support vector regression, while training at a much lower computational cost. We illustrate
the methodology through forecasting the one-step ahead Hourly Ontario Energy Price (HOEP).
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1. Introduction

As time series are generally produced through regular
sampling of a given phenomenon over a period of time, it is
common to obtain very large set of redundant data using
a relatively high sampling frequency (e.g., a sample every
minute) over a long period of time (e.g., several years). A
large training set increases the memory and processing re-
quired to generate the forecasting function. This problem
can be particularly acute in situations requiring the re-
peated generations of a forecasting function from the data
set (e.g., adjusting the hyper-parameters to learn a given
forecasting function). There is thus considerable interest
in reducing the training set size to remove redundancy in
a training set, which can improve the space and time effi-
ciency of the forecast models.

To reduce the training set, we propose a stratified sam-
pling of an input space time series by clustering of the data
based on a state representation of each instance. Partic-
ularly, we investigate the problem of selecting a subset of
available candidate examples so as to obtain a represen-
tative description of a large dataset, in order to conduct
supervised learning. We aim at removing redundancy in
the training set by assuming that with a representative
subset of examples, we can obtain a generalization er-
ror close to the one obtained with the full data set. For

that purpose, we assume that we already have a sufficient
amount of representative data instances. We make a de-
terministic selection of representative examples from the
different clusters to be used further in forecasting model
training. This clustering-based stratification is concretely
carried out for Hourly Ontario Energy Price (HOEP) fore-
casting. Lagged values of the HOEP as well as the lagged
values of the Hourly Ontario Demand (HOD) are consid-
ered as explanatory variables.

The paper is organized as follows: Sec. 2 is an overview
of relevant work concerning the proposed approach. In
Sec. 3, we describe the proposed methodology of clustering-
based stratification so as to select the training subsets.
In Sec. 4, the Hourly Ontario Energy Price data set is
presented, as well as the experimental set-up to evaluate
performance of artificial neural networks and support vec-
tor regression trained on the data subsets generated by
clustering-based stratification. Results and discussions are
presented in Sec. 5, followed by some conclusions in Sec. 6.

2. Related work

The major source of inspiration of our own work orig-
inates from [1], where two methods for constructing the
cross-validation folds from a dataset are presented to de-
terministically assess classifiers. The folds are constructed
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using unsupervised stratification by exploiting the instance
distribution in the input space. The first proposed ap-
proach ranks the samples according to their distance to the
data set centroid, and then this distance it used for parti-
tioning. The second approach clusters and sorts the data
(using the well-known K-means algorithm [2]) according
to their cluster centre in order to conduct the partitioning.
Since both methods attempt to construct more represen-
tative allocation of observations into folds, they reduce the
bias of the resulting estimator.

Nonetheless, the scope of the current work is to extract
the representative data subset for regression-type analysis
in a context of time series forecasting, for which the ex-
planatory variable depends on its own history. The start-
ing point is to embed the data into a time-delayed space
of suitable dimension [3]. Specifically, time series data are
represented by a data point sequence typically measured
at successive moments sampled over uniform time inter-
vals. In that case, it is common to collect a large number
of redundant observations. Consequently, it is important
to choose a small but representative subset of training ex-
amples in order to reduce the computational burden while
preserving performances and possibly improving stability.

Active learning [4] is also closely related to the current
work, although dataset selection is made on-the-fly during
the training. The idea of active learning is to query, and
eventually label, the data samples dynamically during the
learning phase. The selection of the next training samples
is carried out according to some criterion, for example the
level of uncertainty the learner has on the data available
in the pool. Active learning is generally considered useful
when all data are not labelled and the labelling operation
has a given cost, as the method is able to limit greatly the
number of samples requiring labelling.

Another method based on an Artificial Neural Network
(ANN) for selecting examples was proposed by [5]. In par-
ticular, patterns are grouped into pairs located on both
sides of a classification boundary by considering the Ham-
ming distance. To improve the ANN generalization ability,
training is accomplished as suggested in [6]. Namely, the
network training is initiated with a small subset. During
the training process, generalization of the network is esti-
mated using an independent test set and a new pattern is
selected when the generalization estimate exceeds the ap-
parent network error on the current training set. The new
training example is selected to have the maximal error. A
similar algorithm was developed by [7], called active se-
lection of training sets. New patterns having the maximal
error are added to the current subset using an integrated
mean square error estimate. The main focus lies on reduc-
tion of the training set size exploiting information obtained
from the model due to learning from previous examples.
Likewise, [8] proposes cross validation with active pattern
selection based on leave-one-out cross-validation of ANN.

On the other hand, [9] introduces two new data selec-
tion methods to train Support Vector Machines (SVMs)
for classification: the first one selects training data based

on an introduced statistical confidence measure, whereas
the second one uses the Hausdorff distance measure as a
criterion to decide which training examples should belong
to the reduced training set. In turn, [10] and [11] propose
a procedure based on clustering by K -means to accelerate
the training of SVMs. Clusters with mixed composition
are likely to occur near the separation margins and they
may hold some support vectors. Consequently, the num-
ber of vectors in a SVM training set is smaller and the
training time can be decreased without compromising the
generalization capability.

Some dimensionality reduction methods can be used
to select a subset of data if the time series is consid-
ered as a point in a N-dimensional space. The problem
of dimensionality reduction in a time series has been ad-
dressed mainly by transform methods. Particularly, [12]
introduced the Adaptive Piecewise Constant Approxima-
tion (APCA) that approximates each time series by a set of
constant value segments of varying length such that their
individual reconstruction errors are minimal. [13] propose
an index compression method named Grid-based Datawise
Dimensionality Reduction which attempts to preserve the
characteristics of the time-series.

The method we are proposing differs from previous
ones in that the selection of samples is performed directly
in the input space. Moreover, we take into account the
history of the time series since inputs are composed of
lags. Note that, we do not consider the example selection
and training of the forecast model to be conducted simul-
taneously, as this can be computationally expensive and
depends on to the training algorithm used. Furthermore,
in the procedure proposed herein, no prior knowledge of
the desired outputs is required, as the method is unsu-
pervised. Thus, it can be applied to either regression or
classification problems, including those cases when labels
are not available beforehand.

3. Selection of representative training examples

The selection of representative training data examples
is carried out in two steps: 1) applying the clustering pro-
cedure to the time series, in order to discover pattern be-
haviours on input space, and 2) selecting the data from
the clusters obtained, building stratified sample sets that
form a parsimonious data representation.

The main goal is to select data best representing the
structure of the inputs. For that purpose, we apply clus-
tering methods on the input space, in order to determine
the different groups of similar instances. From that point
on, we divert the data of a given cluster evenly into the dif-
ferent folds (data subsets). Clustering is achieved through
the classical K-means algorithm along with the Euclidean
distance between each instance and the associated cluster
centre.

For time series forecasting, we predict the value of a
given variable at the current time step using as input some
of its past values predefined during time steps, termed
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lagged values. The lagged values of the HOEP as well as
the lagged values of the HOD are considered as explana-
tory variables [14]. More formally, let the list aaa ∈ R1×n

be the n lags of the HOEP and bbb ∈ R1×m be the m lags
of the HOD at current time t used to build up the list
lll(t) ∈ R1×n+m, which represents the lagged values (Input
Space) of the forecasted variable:

aaa = [a1, . . . , an], (1a)

bbb = [b1, . . . , bm], (1b)

vvv1(t) = [HOEP (t− a1), . . . , HOEP (t− an)], (1c)

vvv2(t) = [HOD(t− b1), . . . , HOD(t− bm)], (1d)

where vvv1(t) are the HOEP lagged values and vvv2(t) are the
HOD lagged values.

Concatenating both vectors provides:

lll(t) = [vvv1(t)‖vvv2(t)], (2)

where the notation ‖ represents the concatenation opera-
tor.

3.1. Mapping the input space into states

When measuring the Euclidean distance between two
input lagged sets, both observations may have the same
shape but differ only on the lag at the current time step.
Such vectors can be very different in terms of distance,
whereas actually they only differ in their alignment. For
this reason, using distance-based clustering may lead to
poor results when alignment issues occur in the data.

In order to overcome alignment issues, we are propos-
ing to transform the input space into a new space called
the input state, which allows invariance to data shifts. It
consists on considering the minimum, mean, and maxi-
mum of the different lags of the input values as the state
sssi(t) ∈ R1×3 of given lagged values:

sssi(t) = {min(vvvi(t)),mean(vvvi(t)),max(vvvi(t))}. (3)

Though other measures can be used as the state from
the lagged values, these three features appear sufficient
in the present work. The new state sss′(t) ∈ R1×6 is the
representation of six values at time t of the time series:

sss′(t) = [sss1(t)‖sss2(t)]. (4)

3.2. Clustering and distributing data into folds

A survey of clustering time series problems for various
applications can be found in [15]. For instance, for fore-
casting price curves, [16] conducts an experiment with two
clustering techniques, K -means and Expectation Maxi-
mization, demonstrating that the application of these tech-
niques is effective for splitting the whole year into different
day groups, according to their price variations.

In the current paper, we chose to use the K -means
method due to its simplicity, speed, and general robust-
ness, allowing good enough solutions to be found for most

cases. This method relies on an iterative scheme starting
with arbitrarily (randomly) chosen centres. Then, it alter-
nates between two steps until convergence or the exhaus-
tion of resources [15]: 1) distributing of objects among
the clusters, and 2) updating of the cluster centres. The
main idea behind the method is to minimize an objective
function, usually the sum of the squared distance between
the instances from their respective cluster centres.

Thus, the K-means algorithm is applied to cluster the
time series at hand allowing a partition of the data into
a number of groups (the clusters). We then want to as-
sign the data in the different clusters to the folds, so that
each fold contains the representative subset of the origi-
nal dataset. In order to distribute the data into folds, the
clusters are first sorted based on the distance between each
cluster centre and the centre of the first cluster at hand.
Then, the data are sorted forming each cluster according
to its distance from the cluster centre [1]. This second
sorting step is required to ensure that the data within a
cluster are distributed evenly between the folds, since in-
stances within a cluster are likely to be more related to
nearby data according to the distance to the cluster cen-
tre than to data farther away using the same measure.
Moreover, instances close to the cluster centre probably
resemble each other more that they resemble data of the
clusters located far from the centre.

With this sorting in two stages, between the clusters
and within the clusters, data instances can then be dis-
tributed to the folds. This is done simply in a round-robin
fashion, processing the data sequentially according to the
two stages of sorting, and alternating between the folds
when making the assignments. For instance, we begin by
processing the first cluster, from which the closest data to
the cluster centre is assigned to the first fold, the second
closest data to the centre is assigned to the second fold,
and so on. When all folds have received one instance, we
then return to the first fold to proceed with the assign-
ments, and when all data of a cluster have been processed,
we continue with the next cluster according to its distance
from the first one.

To ensure a good stability of the stratification pro-
cess [17], it is convenient to carry out several repetitions
of K-means to produce the clusters, each with a new set
of initial cluster centroid positions. The final solution is
the one with the lowest value for within-cluster sums of
point-to-centroid distances. This way, the stratification
by clustering methodology becomes almost a determinis-
tic approach, with a clustering method that produces the
same clusters from one run to another, thus generating the
same stratified partitioning of a given dataset for a given
parametrization.

The procedure consists of the following steps:

1. Set K as the predefined number of clusters.

2. Apply K-means clustering algorithm with the Eu-
clidean distance into the input space lll(t) or input
state sss′(t). Repeat this procedure a number of times
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(e.g., 30 experiments), each with a new set of ini-
tial centroids. Return and record the matrix solu-
tion CCCl = [ccc1, ccc2, . . . , cccK ] ∈ RK×n+m for the input
space or: CCCs = [ccc1, ccc2, . . . , cccK ] ∈ RK×6 for the input
state with the lowest value for within-cluster sums
of point-to-centroid distances.

3. Order the clusters to obtain the ordinal set {gi : i =
1, 2, . . . ,K}. The clusters are sorted according to
the Euclidean distance between each of the cluster
centroids and the centroid of the first cluster, whose
centroid is ccc1. To select the first cluster, we calculate
the number of instances in each cluster n(gi) and
then we choose the one with the smallest number of
elements. All clusters are ranked according to the
similarity distance ‖ccc1 − ccci‖ ≤ ‖ccc1 − cccj‖,∀i 6= j,
with i, j = 1, 2, . . . ,K, where ccci is the i-th cluster
centroid.

4. Sort instances of i-th cluster according to the simi-
larity of their distance to the corresponding centroid,
ccci: ‖ccci − xxxi(y)‖ ≤ ‖ccci − xxxi(z)‖,∀y 6= z, with y, z =
1, 2, . . . , n(gi), where xxxi(·) denotes the ordered in-
stance that belongs to i-th cluster for lll(·) ∈ R1×n+m

to input space and sss′(·) ∈ R1×6 to input state.

5. Distribute the instances into F folds, where each
{f = 1, 2, . . . , F} fold will contain instances from
each cluster using interleaved indices, as proposed by
[1], following Algorithm 1, using the clusters sorted
in step 3 as groups gi and instances xxxi(·) sorted in
step 4. The number of instances in each fold is de-
fined as Nf .

6. Create the training subset XXXtr with the data of one
or several folds.

7. (Optional) Further split the training subset XXXtr into
several subsets, according to the needs of the learn-
ing methodology used. This is achieved by applying
Algorithm 1 to the whole training subset XXXtr as a
single input group g1, to produce a certain number of
new partitions according to the number and size of
the new subsets required. For example, if we want to
split the training subset into two new subsets, i.e. a
learning subset with 67 % of the training subset data
and a validation subset with the remaining 33 %, we
first create three partitions from the training subset
with Algorithm 1, then we concatenate the first two
partitions to create the learning subset and we use
the last one as the validation subset. Such an inter-
leaved distribution of the training subset data will
preserve the stratification in the various subsets.

3.3. Number of clusters

The K-means algorithm requires the user to specify
the number of clusters to model in advance, referred to
as the variable K. We are proposing here a method for
the estimation of the number of clusters in the context
of time series data stratification. Thus, we define a cen-
troid γγγf for each fold, that is the mean value along each

Algorithm 1 Interleaved data distribution in F subsets.

Require: groups gi and instances xxxi(·)
h = 1
for each group gi do
for each instance xxxi(·) do
m = h mod f
if m = 0 then m = f
assign instance xxxi(·) to fold m
h = h+ 1

end for
end for

dimension of XXXf = [xxx1,xxx2, . . . ,xxxNf
] ∈ RNf×(n+m), that

is ΓΓΓl = [γγγ1, γγγ2, . . . , γγγF ] ∈ RF×n+m for the input space or
ΓΓΓs = [γγγ1, γγγ2, . . . , γγγF ] ∈ RF×6 for the input state.

We enforce the fact that each fold includes elements
from all clusters, and that the number of elements from
each cluster should be roughly comparable in each fold.
Therefore, we expect that the centroids of the folds should
be very close to each other when the clustering is well done.
This is the criteria we are proposing to use to select the
appropriate number of clusters, which corresponds to min-
imizing the average Euclidean distance between centroids
for each pair of folds:

K = argmin
k

F (F − 1)

2

F∑
i=1

F∑
j=i+1

‖γγγki − γγγkj ‖. (5)

The proposed procedure for choosing the number of
clusters involves the following steps:

1. Set the number of folds F ;

2. Apply the procedure of clustering and data distri-
bution into folds (see 3.2), using different values of
K;

3. Compute the Euclidean distance between centroids
of each pairs of folds, for each value of K;

4. Return the value of K that minimizes the average
distance between fold centroids (Eq. 5).

An illustrative two-dimensional problem is presented
in Fig. 1. It presents the idea behind clustering-based
stratification with K = 3 clusters and F = 3 folds. The
application of clustering allows the formation of groups
of instances (the clusters), where the instances in each
group are relatively similar. Then, these instances are dis-
tributed between the folds in order to obtain balanced sets
that are capturing the essence of the various clusters with
only a subset of the data. In Fig. 1, the plot at the left
shows which instances of fold 1 (data in blue) are chosen.
Note that this fold contains data from different regions of
each cluster according to the distance between each data
and the centroid of the corresponding cluster. The mid-
dle plot in the figure shows the instances selected from
fold 1 (blue) and fold 2 (yellow). The plot at the right
shows how the full data were divided into the three folds.
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Figure 1: Illustrative example of the proposed method and how the number of clusters is selected, with F = 3 folds and K = 3 clusters in
two dimensions. The left plot shows assignment of data to fold 1 (blue), the middle plot adds the assignment to fold 2 (yellow), while the
right plot presents complete assignment to the three folds.

The figure illustrates the idea that in a good stratification,
the distance between centroids (γγγi) should be as small as
possible. Thus, the proposed criterion allows the determi-
nation of the number of clusters by taking into account the
heterogeneity of data in the clusters and the homogeneity
of data in the folds.

4. Experimental methodology

In the remaining parts of the paper, we are assess-
ing the stratification by clustering methodology presented
in the previous section in the context of one-step ahead
Hourly Ontario Energy Price (HOEP) forecasting. Note
that the central idea of this work is neither improving the
qualities of generalization of an estimator nor to develop
the most generalized and robust forecast model. The idea
is rather to analyze the relation between the error and
the number of elements used to train a model for time se-
ries forecasting, in order to observe whether the method
proposed for clustering-based stratification of time series
allows the training of a model with a smaller data set while
having little or no impact on performance.

4.1. Hourly Ontario Energy Price

To assess our method, we selected the Hourly Ontario
Energy Price, a dataset which has been used in several
other papers [14, 18–20].

In the Ontario market, the Independent Electricity Sys-
tem Operator (IESO)1 publishes the Hourly Ontario En-
ergy Price (HOEP) and Hourly Ontario Demands (HOD).
The HOEP is the hourly price ($/MWh) that is charged

1http://www.ieso.ca/imoweb/marketdata/marketData.asp

to local distribution companies, other non-dispatchable
loads, and self-scheduling generators. Currently, Ontario
has a unique hourly price for the whole province, that is,
the price we address in this paper. Market demand repre-
sents the total energy that was supplied from the IESO-
administered market.

Raw data of HOEP and HOD is shown in Figure 2.
The peaks HOEP presented in this figure are related with
to high reserve requirements.

4.2. Data pre-processing
In order to limit the negative effects of the price outliers

and to allow a comparison of the variables of different units
and scales such as price (HOEP) and demand (HOD), a
suitable pre-processing of the original database has been
proposed. Since the prices over $200/MWh are treated
as anomalous prices2, the pre-processing scheme is formu-
lated such that if the HOEP is above than $200/MWh,
it will be replaced with a demand weighted average of the
HOEPs of three previous days as shown below [21]:

Pt =


Pt if Pt < $200/MWh∑3

i=1(Pt−168i ×Dt−168i)∑3
i=1(Pt−168i)

if Pt ≥ $200/MWh
.

(6)
where P = HOEP and D = HOD. Then, standardiza-
tion is used on the feature component of data set LLL =
[lll(1), lll(2), . . . , lll(N)] ∈ RN×n+m to provide the zero mean
and unit standard deviation:

l̂ll
i

=
llli − µi

σi
, i = {1, . . . , n+m}, (7)

2See http://www.ontarioenergyboard.ca/OEB/Industry/About%

20the%20OEB/Electricity%20Market%20Surveillance/Market%

20Surveillance%20Panel%20Reports
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Figure 2: Hourly Ontario Energy Price (HOEP) and Hourly Ontario Demands (HOD) from May 1, 2002 to April 30, 2006.

where llli is the i-th component of data set LLL, l̂ll
i

is the
corresponding normalized value, µi is the mean of the i-th
component, and σi is the standard deviation.

4.3. Training and testing sets

First we divide the HOEP series into different years:

X = Xo ∪ Xo+1 ∪ . . . ∪ Xe. (8)

In the current case, we used o = 2002 as the initial year
and e = 2006 as the final year composing the datasets.
A year of HOEP time series begins on May 1 and ends
on April 30. Then we apply a sliding window to create
training and test datasets. Training years correspond to
years o to e − 1, that is years 2002 to 2005. For each
training year, the following one is used for testing. For
instance, for training year 2005 the corresponding testing
year is 2006.

Each training set Xi is processed using the stratifica-
tion by clustering approach described in Sec. 3.

4.4. Measures of accuracy

To assess the prediction accuracy of forecasting models,
the Mean Absolute Percentage Error (MAPE) and Root
Mean Square Error (RMSE) criteria are commonly used
[22]. The MAPE is calculated as:

MAPE =
100

NT

NT∑
i=1

∣∣∣∣∣pactt − pfort

pactt

∣∣∣∣∣ , (9)

while the RMSE is calculated as:

RMSE =

√√√√ 1

NT

NT∑
i=1

(pactt − pfort )2, (10)

where pactt is the actual value at time step t and pfort is the
forecasted value of HOEP. NT is the number of data used
in test.

However, it appears that with HOEP, there are some
data that are deviating significantly from the average val-
ues of the time series, which would have a exaggerated
effect on the MAPE and RMSE given their scale. For that
purpose, we decided to make use of the trimmed MAPE
and trimmed RMSE instead, where the highest 5 % error
values are removed. We defined these measures first by
defining a trimming function that is applied on the abso-
lute errors:

Et =
∣∣∣pactt − pfort

∣∣∣ , (11)

E = {E1, E2, . . . , EN}, (12)

trim(E, θ) = {Et ∈ E | Et ≤ θ}. (13)

Then, we evaluate the trimming threshold E′ as the
following:

U = {Et ∈ E | n(trim(E,Et)) ≥ 0.95N}, (14)

E′ = argmin
u∈U

(n(trim(E, u))), (15)

where n(·) is the cardinality of a set.
From this, the trimmed MAPE criteria with the 5 %

6



highest error values removed are calculated as:

Etrim = trim(E,E′), (16)

trimmed MAPE =
100

n(Etrim)

∑
Et∈Etrim

∣∣∣∣Et

xt

∣∣∣∣ . (17)

Likewise, the trimmed RMSE criteria is calculated as
follows:

trimmed RMSE =

√
1

n(Etrim)

∑
Et∈Etrim

(Et)2. (18)

5. Results and discussion

In this section we examine whether the performance of
the proposed stratification using the clustering methodol-
ogy (strat) is better than a random selection of training
subsets (rand). For this, we proposed to carry out a com-
parison between samples of different size obtained from
a strat and random methodology, and use them to fore-
cast one-step ahead Hourly Ontario Energy Price with two
regression techniques: Artificial Neural Networks (ANN)
and Support Vector Regression (SVR).

For the ANN, the configuration used consists in a feed-
forward network trained using the Levenberg Marquardt
algorithm, as implemented in the Matlab Neural Network
toolbox [23]. The training subset is further split into two
subsets, that is the learning subset, which contains 67% of
the data, and the validation subset, which includes the re-
maining 33%. For the stratification by clustering method,
these subsets are generated following instructions given in
step 9 of the procedure presented in Sec. 3.2. For the
random selection, the two subsets are produced through a
random partitioning. The learning subset is used to carry
out the actual training of the ANN with the backpropaga-
tion method, while the validation subset is used to measure
the generalization capability (empirical error) of the net-
work. Over all networks produced at each training epoch,
we retain the one minimizing the error rate on the val-
idation subset. A three-layered ANN has been selected
having 10 nodes on each of the two hidden layers with
a sigmoid transfer function and one output node with a
linear transfer function.

For the SVR, the ν-SVR version with RBF (Gaussian)
kernel, as implemented in LIBSVM [24], is used. LIBSVM
allows a grid search to be conducted over all combinations
of hyper-parameters considered for the learning algorithm.
This is achieved by evaluating the cross-validation (CV)
accuracy for each hyper-parameter combination, and then
returning the one with the highest CV accuracy. For our
experiments, the hyper-parameter values evaluated are C
and ν. Once the SVR hyper-parameters have been deter-
mined, the final training is carried out, this time using the
complete training subset.

The two regression models have been run 30 times for
each size of training subset. The training subset sizes
tested correspond to 5 %, 10 %, 25 %, 50 %, and 100 % of
the available data.

5.1. Features

Since variable selection is not the topic of the paper,
we used the following HOEP and HOD lagged values for
our experiments, as proposed by [18]:

aaa = (1, 2, 23, 24, 25, 48, 120, 144, 168, 169, 192),

bbb = (1, 23, 24, 25, 144, 167, 168, 169, 192),

where aaa are lags used for price values used as inputs, and
bbb are the lags for the demand values.

5.2. Clusters

In order to select the number of clusters to use, we
tested stratification with F ∈ {2, 4, 10, 20} folds corre-
sponding to a subset with 50%, 25%, 10%, and 5% of
the full dataset, respectively, in combination with K ∈
{2, 3, ..., 15} clusters. For each configuration, we repeated
the clustering 10 times, each with a new set of initial clus-
ter centroid positions, selecting the solution with the low-
est value of Eq. 5 on average over the various number of
clusters tested.

5.3. Results on using ANN and SVR on data selected with
stratification by clustering

Figure 3 and 4 present visually the results obtained
with the ANN and SVR, respectively. Figures show the
average and standard deviation of the trimmed MAPE,
the trimmed RMSE, the MAPE, and the RMSE for the
results obtained on the test years, for 1-hour ahead HOEP
forecasts using data selected with the methodology applied
in the input space and the input state. The year represents
the period used for the training.

Tables 1 and 2 present trimmed MAPE and RMSE
obtained on the test sets for 30 experiments for 1-hour
ahead HOEP forecasts generated using ANN or SVR with
different training subset sizes. The year represents the pe-
riod of training, strat represents the results generated with
samples obtained with the methodology of stratification,
while rand represents the results produced with samples
randomly obtained.

It can be observed that errors obtained with subsets
produced with the stratification by clustering method are
generally lower in comparison with errors obtained with
randomly generated subsets. To assess the statistical va-
lidity conducted with the stratification methodology pro-
posed, a non-parametric Mann-Whitney U-test has been
used [25]. The null hypothesis is that the means of the ran-
dom or stratified methodology are equal at a 95% signifi-
cance level. Looking at the standard deviation, it also ap-
pears that the results generated by stratification are much
more stable than those produced with randomly selected
subsets, demonstrating the general robustness of the strat-
ification by clustering approach.

Moreover, we explain the slight difference in the re-
sponse mean with 100% of the data by the application of
step 7 of the procedure presented in Sec. 3.2, in which the
learning and validation sets are generated following the
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Figure 3: ANN forecasting 1-step ahead HOEP for year 2006, with
year 2005 used as training set and stratification by clustering applied
in the (a) input state and (b) input space

stratification by clustering approach, while our compari-
son with the full training set assumes that the learning and
validation subsets are produced through a random parti-
tion. It appears that this difference decreases as the sub-
sets become larger for both the stratification and random
selection approaches, which is expected. But the difference
is generally smaller and less dispersed for stratification by
clustering in comparison to the random selection. These
results suggest that with 25% data generated by stratifi-
cation by clustering, the MAPE and RMS errors are still
relatively close to what is obtained when using the full
training set in most cases.

Figure 5 presents the differences between the trimmed
MAPE of the 30 experiments and the trimmed average er-
ror when all training data is used. Results are for forecast-
ing 1-step ahead HOEP for year 2004, trained on year 2003
data. It appears that this difference decreases as the sub-
sets become larger for both the stratification and random
selection approaches, which is expected. But the difference

(a) Input space

5% 10% 25% 50% 100%
MAPE strat 19.22 (1.95) 18.31 (1.79) 15.20 (0.77) 14.38 (0.58) 13.68 (0.57)
2002 rand 23.28 (3.60) 19.95 (1.81) 17.07 (1.38) 15.29 (0.61) 13.87 (0.63)

RMSE strat 11.21 (0.81) 10.58 (0.71) 9.25 (0.29) 8.87 (0.19) 8.53 (0.12)
2002 rand 13.58 (1.59) 11.51 (0.92) 10.06 (0.60) 9.19 (0.23) 8.61 (0.16)

MAPE strat 14.38 (1.15) 13.27 (0.94) 11.97 (0.51) 11.40 (0.24) 11.05 (0.25)
2003 rand 16.08 (1.51) 14.17 (1.55) 12.83 (0.71) 12.01 (0.46) 10.96 (0.21)

RMSE strat 9.14 (0.70) 8.49 (0.59) 7.71 (0.24) 7.39 (0.13) 7.18 (0.11)
2003 rand 10.29 (0.88) 9.11 (0.97) 8.19 (0.39) 7.75 (0.26) 7.16 (0.09)

MAPE strat 19.34 (1.77) 17.46 (1.11) 16.15 (1.18) 14.88 (0.75) 14.35 (0.50)
2004 rand 24.07 (5.74) 20.72 (2.12) 17.48 (1.31) 16.04 (1.25) 14.41 (0.47)

RMSE strat 17.82 (2.47) 16.20 (2.07) 15.77 (2.34) 14.10 (1.17) 13.50 (0.78)
2004 rand 22.24 (6.85) 19.36 (3.05) 16.38 (1.91) 15.31 (1.99) 13.60 (0.86)

MAPE strat 22.03 (2.33) 18.53 (1.94) 16.28 (1.29) 15.51 (1.23) 14.36 (0.48)
2005 rand 24.86 (3.83) 21.13 (2.91) 17.84 (1.42) 16.38 (1.42) 14.20 (0.55)

RMSE strat 11.92 (1.17) 10.29 (0.70) 9.24 (0.48) 8.82 (0.38) 8.42 (0.14)
2005 rand 13.43 (1.84) 11.53 (1.16) 10.00 (0.57) 9.24 (0.48) 8.37 (0.15)

(b) Input state

5% 10% 25% 50% 100%
MAPE strat 19.97 (2.71) 17.32 (1.32) 15.29 (1.13) 14.32 (0.71) 13.69 (0.49)
2002 rand 21.44 (2.96) 20.23 (2.98) 16.94 (1.20) 15.45 (0.87) 13.73 (0.53)

RMSE strat 11.55 (1.19) 10.30 (0.58) 9.26 (0.43) 8.78 (0.23) 8.55 (0.13)
2002 rand 12.62 (1.55) 11.66 (1.47) 10.01 (0.52) 9.34 (0.45) 8.57 (0.14)

MAPE strat 14.40 (1.21) 13.28 (1.03) 11.97 (0.50) 11.31 (0.31) 11.12 (0.20)
2003 rand 16.48 (2.15) 14.18 (1.03) 12.78 (0.61) 12.00 (0.51) 11.00 (0.17)

RMSE strat 9.18 (0.72) 8.42 (0.52) 7.70 (0.26) 7.35 (0.16) 7.23 (0.07)
2003 rand 10.31 (1.23) 8.98 (0.57) 8.17 (0.35) 7.73 (0.29) 7.19 (0.11)

MAPE strat 20.21 (2.45) 17.68 (1.39) 16.19 (1.05) 14.94 (0.65) 14.18 (0.40)
2004 rand 24.14 (4.80) 20.38 (2.89) 18.20 (2.65) 16.24 (1.16) 14.44 (0.45)

RMSE strat 19.06 (4.12) 16.43 (2.04) 15.39 (1.74) 14.03 (1.02) 13.27 (0.56)
2004 rand 23.71 (7.89) 19.57 (4.31) 18.07 (4.94) 15.61 (2.09) 13.65 (0.77)

MAPE strat 20.94 (2.32) 18.82 (1.82) 16.11 (1.38) 15.03 (0.71) 14.36 (0.36)
2005 rand 23.92 (4.27) 21.52 (2.84) 17.98 (1.77) 16.75 (1.21) 14.30 (0.39)

RMSE strat 11.39 (0.97) 10.36 (0.71) 9.23 (0.46) 8.71 (0.22) 8.41 (0.13)
2005 rand 12.95 (1.87) 11.65 (1.19) 10.06 (0.78) 9.41 (0.40) 8.38 (0.11)

Table 1: Trimmed MAPE and RMSE in 1-hour ahead HOEP fore-
cast with ANN with stratification done in the (a) input space and (b)
input state. The values in parentheses correspond to the standard
deviation over the 30 experiences. The percentage indicates the size
of the sample taken from the data of the corresponding year. Re-
ported values are testing errors over the year following the training
year mentionned in first column. Results in bold are statistically
better with a 95% significance level according to a Mann-Whitney
U-test, when comparing the selection stratified of data with the cor-
responding one obtained with random selection.

is generally smaller when the examples of training were se-
lected with the stratification methodology proposed.

As indicated in the LIBSVM guide [24], although the
RBF kernel is a reasonable first choice, there are some situ-
ations where the RBF kernel is not suitable. In particular,
when the number of features is very large. In this case,
other improvements, such as the stratification of the folds
(construct folds deterministically rather than randomly)
to use in the v-fold cross-validation, may be needed to re-
duce the bias. Other techniques such as feature selection
may be needed.

The K-means procedure is deterministic as far as a
given set of initial centre positions will always lead to the
same final results when using the same parametrization.
However, the choice of the initial positions of the centres
is arbitrary and often made through a random process, for
example by generating K random positions uniformly in
the data domain or by making a random selection of K in-
stances in the dataset. So, from one execution to another,
the results of K-means may differ given that different ini-
tial positions for the K centres will be used. Nevertheless,
K-means is known to be relatively stable in practise, as the
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Figure 4: SVR forecasting 1-step ahead HOEP for year 2005, with
year 2004 used as training set and stratification by clustering applied
in the (a) input state and (b) input space

number of distinct clustering results obtained at conver-
gence is relatively limited, such that carrying out several
repetitions of K-means should provide a good sampling of
the possible solutions.

6. Conclusion

In this paper, we proposed a new stratification by clus-
tering method that generates training subsets for forecast-
ing. This method enables the production of small subsets
composed of representative samples of the original dataset.
The stratification method has been tested on forecasting
Hourly Ontario Energy Price (HOEP), with results for
the years 2002 to 2006. The stratification by clustering
method proposed has also been compared to a random se-
lection of subsets, using Artificial Neural Network (ANN)
and Support Vector Regression (SVR) as forecasting mod-
els.

Results obtained by the stratification by clustering are

(a) Input space

5% 10% 25% 50% 100%
MAPE strat 13.64 (0.54) 13.03 (0.43) 12.50 (0.20) 12.18 (0.13) 11.93 (0.06)
2002 rand 14.65 (0.80) 13.52 (0.48) 12.95 (0.34) 12.50 (0.18) 11.92 (0.07)

RMSE strat 8.77 (0.18) 8.50 (0.14) 8.27 (0.05) 8.15 (0.04) 8.04 (0.02)
2002 rand 9.27 (0.34) 8.76 (0.20) 8.47 (0.10) 8.27 (0.05) 8.04 (0.03)

MAPE strat 11.41 (0.24) 11.01 (0.26) 10.75 (0.14) 10.65 (0.09) 10.53 (0.01)
2003 rand 11.97 (0.45) 11.45 (0.34) 10.87 (0.16) 10.78 (0.17) 10.59 (0.04)

RMSE strat 7.39 (0.12) 7.19 (0.15) 7.06 (0.07) 7.03 (0.05) 7.03 (0.02)
2003 rand 7.68 (0.22) 7.41 (0.18) 7.12 (0.07) 7.08 (0.08) 7.00 (0.03)

MAPE strat 15.58 (0.50) 14.83 (0.39) 14.05 (0.29) 13.69 (0.14) 13.41 (0.02)
2004 rand 16.45 (1.21) 15.55 (0.82) 14.61 (0.41) 14.08 (0.28) 13.43 (0.12)

RMSE strat 15.10 (0.87) 14.50 (0.75) 13.67 (0.53) 13.26 (0.22) 12.93 (0.06)
2004 rand 16.06 (2.20) 15.29 (1.44) 14.33 (0.66) 13.73 (0.48) 12.97 (0.18)

MAPE strat 14.67 (0.64) 14.01 (0.44) 13.61 (0.22) 13.53 (0.14) 13.38 (0.01)
2005 rand 15.75 (1.49) 14.78 (0.95) 14.07 (0.34) 13.73 (0.21) 13.37 (0.01)

RMSE strat 8.68 (0.16) 8.38 (0.12) 8.19 (0.07) 8.11 (0.04) 8.03 (0.01)
2005 rand 9.15 (0.46) 8.71 (0.29) 8.37 (0.11) 8.21 (0.06) 8.03 (0.01)

(b) Input state

5% 10% 25% 50% 100%
MAPE strat 13.39 (0.48) 12.96 (0.24) 12.40 (0.08) 12.16 (0.13) 11.91 (0.04)
2002 rand 14.51 (0.82) 13.69 (0.52) 12.93 (0.26) 12.48 (0.18) 11.91 (0.07)

RMSE strat 8.70 (0.18) 8.47 (0.10) 8.30 (0.04) 8.14 (0.05) 8.04 (0.02)
2002 rand 9.20 (0.23) 8.81 (0.23) 8.43 (0.07) 8.26 (0.06) 8.04 (0.02)

MAPE strat 11.37 (0.38) 11.01 (0.19) 10.69 (0.12) 10.62 (0.10) 10.63 (0.01)
2003 rand 12.14 (0.42) 11.48 (0.34) 10.95 (0.21) 10.77 (0.15) 10.58 (0.05)

RMSE strat 7.41 (0.20) 7.20 (0.08) 7.04 (0.05) 7.01 (0.05) 7.04 (0.01)
2003 rand 7.81 (0.25) 7.41 (0.16) 7.16 (0.10) 7.07 (0.07) 7.00 (0.03)

MAPE strat 15.40 (0.47) 14.63 (0.35) 14.15 (0.25) 13.67 (0.21) 13.42 (0.04)
2004 rand 16.38 (0.89) 15.47 (0.67) 14.53 (0.31) 14.06 (0.26) 13.43 (0.08)

RMSE strat 14.99 (0.86) 14.24 (0.74) 13.81 (0.42) 13.26 (0.33) 12.97 (0.03)
2004 rand 15.91 (1.64) 15.12 (1.17) 14.18 (0.68) 13.71 (0.50) 12.96 (0.12)

MAPE strat 14.45 (0.49) 14.19 (0.32) 13.63 (0.24) 13.52 (0.22) 13.37 (0.00)
2005 rand 15.89 (1.23) 14.65 (0.74) 14.02 (0.41) 13.66 (0.23) 13.37 (0.02)

RMSE strat 8.63 (0.17) 8.40 (0.10) 8.20 (0.08) 8.11 (0.06) 8.03 (0.00)
2005 rand 9.20 (0.37) 8.69 (0.19) 8.34 (0.11) 8.21 (0.07) 8.03 (0.01)

Table 2: Trimmed MAPE and RMSE in 1-hour ahead HOEP forecast
with SVR with the stratification conducted in the (a) input space and
(b) input state. The values in parentheses correspond to the stan-
dard deviation over the 30 experiments. The percentage indicates
the size of the sample taken from the data of the corresponding year.
Reported values are testing errors over the year following the train-
ing year mentionned in first column. Results in bold are statistically
better with a 95% significance level according to a Mann-Whitney
U-test, when comparing the selection stratified of data with the cor-
responding one obtained with random selection.

shown to be better in general than the a random selec-
tion method for producing a representative subset of a
given size. Moreover, the stratification procedure appears
relevant for creating subsets having less than 50% of the
original dataset, whose subsets still allow the learning of
forecasting models having performances comparable to the
models trained on the full dataset.

Using small training subset is interesting in many ways.
First, it can significantly decrease the time required to
train a forecasting model. For instance, state-of-the-art
SVR implementation has quadratic time complexity ac-
cording to the number of data in the training set. Thus,
training a SVR with more than 100 000 training instances
is hardly feasible in practise. The current procedure is
quite straightforward, with a linear complexity in time
and space, such that it can be applied to select smaller
subsets from large datasets, in order to keep training time
at reasonable levels. Another situation where this is par-
ticularly interesting for study of forecasting models. An
example of this would be to determine at first the relevant
inputs to use with the forecasting methods, such as con-
ducting feature selections using a wrapper approach [26].
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(a) SVR in input state
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(b) ANN in input space

Figure 5: Average and dispersion of the trimmed MAPE for strat-
ification by clustering and random selection over years 2002-2006
obtained with (a) SVR in the input state and (b) ANN in the input
space.

These methods may have prohibitive computational cost
when working with the full datasets, while increasing the
risk of oversearching the space of forecasting methods [27].
Working on smaller but representative subsets for hyper-
parameter tuning or feature selection allows the compu-
tation time to be reduced, while optimizing over only a
small part of the full training set, keeping the rest of the
training set untouched for the final training.
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[6] A. Röbel, Dynamic pattern selection: Effectively training back-
propagation neural networks, in: M. Marinaro, P. G. Morasso
(Eds.), ICANN ’94, Springer London, 1994, pp. 643–646. doi:

10.1007/978-1-4471-2097-1_151.
[7] M. Plutowski, H. White, Selecting concise training sets from

clean data, IEEE Trans. on Neural Netw. 4 (2) (1993) 305–318.
doi:10.1109/72.207618.

[8] F. Leisch, L. Jain, K. Hornik, Cross-validation with active pat-
tern selection for neural-network classifiers, IEEE Trans. on
Neural Netw. 9 (1) (1998) 35–41. doi:10.1109/72.655027.

[9] J. Wang, P. Neskovic, L. N. Cooper, Training data selection for
support vector machines, in: L. Wang, K. Chen, Y. Ong (Eds.),
Advances in Natural Computation, Vol. 3610, Springer Berlin
Heidelberg, 2005, pp. 554–564. doi:10.1007/11539087_71.

[10] M. Barros de Almeida, A. de Padua Braga, J. Braga, SVM-
KM: speeding SVMs learning with a priori cluster selection and
k-means, in: Proc. of the Brazilian Symposium on Neural Net-
works, 2000, pp. 162–167. doi:10.1109/SBRN.2000.889732.

[11] Z. Songfeng, L. Xiaofeng, Z. Nanning, X. Weipu, Unsupervised
clustering based reduced support vector machines, in: IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing, Vol. 2, 2003, pp. 821–824. doi:10.1109/ICASSP.2003.

1202493.
[12] K. Chakrabarti, E. Keogh, S. Mehrotra, M. Pazzani, Locally

adaptive dimensionality reduction for indexing large time series
databases, ACM T. Database Syst. 27 (2) (2002) 188–228. doi:
10.1145/568518.568520.

[13] J. An, Y.-P. P. Chen, H. Chen, DDR: an index method for
large time-series datasets, Information Systems 30 (5) (2005)
333–348. doi:10.1016/j.is.2004.05.001.

[14] H. Zareipour, K. Bhattacharya, C. Canizares, Forecasting the
hourly Ontario energy price by multivariate adaptive regression
splines, in: Power Engineering Society General Meeting, 2006,
pp. 1–7. doi:10.1109/PES.2006.1709474.

[15] T. W. Liao, Clustering of time series data – a survey, Pat-
tern Recogn. 38 (11) (2005) 1857–1874. doi:10.1016/j.patcog.
2005.01.025.
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