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Abstract— This paper proposes the use of a kernel density
estimation to measure similarities between trajectories. The
similarities are then used to predict the future locations of a
target. For a given environment with a history of previous target
trajectories, the goal is to establish a probabilistic framework
to predict the future trajectory of currently observed targets
based on their recent moves. Instead of clustering trajectories
into groups, we calculate the similarity between a given test
trajectory and the set of all past trajectories in a dataset. Next,
we use a weighted mechanism for prediction, that can be used
in target tracking and collision avoidance applications. The
proposed method is compared with two other commonly used
similarity models (PCA and LCSS) over a dataset of simulated
trajectories, and two datasets of real observations. Results show
that the proposed method significantly outperforms the existing
models for those datasets and experimental settings.

I. INTRODUCTION

Trajectory prediction is the process of estimating the future
location of a target moving inside an environment. A trajec-
tory is usually modelled as a sequence of observed locations
for the target. Therefore, in trajectory prediction, the goal is
to predict the future location of a given target, given a history
of previous target locations. Trajectory prediction has many
applications in robotics. For example, in an environment
where humans and robots coexist, the trajectory of the robots
can be determined based on human trajectories, as the system
tries to avoid possible collisions between robots and humans.
Therefore, it is crucial to have an accurate estimate for the
future positions of the humans [6].

A simple approach for this problem is to perform an
estimation using only an on-going trajectory of the same
target. Kalman Filters [4] and Particle Filters [3] are two
classical methods commonly used for this purpose. The
problem with these approaches is that they are not able to
predict far into the future. For example, if one uses particle
filtering (or Kalman filtering) to predict 10 time steps ahead,
the prediction variance will grow 10 times larger than the one
time step variance, which would make the method hardly
usable for most applications, as the prediction uncertainty
could rapidly become larger than the area under study.

A more informed approach is to exploit the history of other
targets that have already traversed the same environment, to
predict the trajectory of future targets. To exploit the history
of previous targets, some approaches require the calculation
of the similarity between two trajectories. Here, the two
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trajectories are that of a new target and another trajectory
from the set of trajectories of previous targets. There are
several approaches proposed to solve this problem. For
instance, Bashir et al. [1] proposed to determine the dissim-
ilarity between two trajectories using the Euclidean distance
between the Principal Component Analysis (PCA) coeffi-
cients of each trajectory. Dynamic Time Warping (DTW)
[5], and Longest Common Subsequence (LCSS) [9] are two
other methods that calculate similarity through subsequence
alignment. They have been shown to produce stable results
[11].

The mentioned similarity-based prediction methods can be
viewed as non-parametric approaches for the problem. The
parametric approaches (e.g. hidden Markov models (HMM)
[7], or inverse reinforcement learning [13]) have also been
applied for the prediction problem.

Compared to parametric methods, non-parametric methods
have desirable properties for trajectory prediction, such as
their ability to work in an online fashion. In other words,
with parametric methods, the addition of new trajectories in
the history dataset implies the re-estimation of all system
parameters, while this is not the case for non-parametric
methods. This is an important property for the trajectory
prediction problem, because new trajectories are detected all
the time and they should be added to the history dataset. Non-
parametric methods have the advantage of being insensitive
to the addition of new trajectories, as each prediction is
computed on-demand over the history dataset, with little
or no other computation required beforehand. However, the
computation required is proportional to the history dataset
size, such that for a large set of trajectories observed,
one should limit computation by restricting the size of the
history dataset used in some way (e.g., through a sliding
window). Specifically, in the case where the obstacles in the
environment are mobile, the combination of online trajectory
addition and the sliding variable becomes important, as the
most recent trajectories should be used for prediction of new
trajectories.

Besides, the parameters of a parametric method can be fine
tuned for a specific problem, but usually differ from problem
to problem. For example, in the HMM approaches, the choice
of the number and form of hidden states (which could be line
segments [7], mixture of Gaussians [2], or Voronoi diagrams
[8], etc.) is different for different environments.

In this paper, we propose to use kernel density estimation
(KDE) as a non-parametric method, to model the similarity
between two trajectories, and to use that similarity to predict
the future locations of targets. Moreover, instead of clustering
trajectories into groups, we calculate the similarity between



a given test trajectory and the set of all trajectories in
the history dataset. Next, we use a weighted mechanism
for prediction. The performance of the proposed similarity
measure is compared with the well-known LCSS and PCA
methods over a dataset of simulated trajectories and two
datasets of real observations.

II. PROBLEM DEFINITION

Trajectory prediction is the process of estimating the future
location of a given target using the information of its previous
movements and the movements that other targets have made
in the same environment. More precisely, let T(t)

j represent
an on-going target’s trajectory in an environment Ξ, currently
being observed at time t, since its arrival at time tj . We wish
to predict the location of the target after s time steps (i.e.,
T̂

(t+s)

j ) as accurately as possible.
We build a probabilistic model to represent the target’s

future location. Let X(t+s)
j denote over the sample space of

all locations q ∈ Ξ, a discrete random variable for target Tj
at time t + s. Variable X

(t+s)
j is defined by a probability

mass function P (X
(t+s)
j = q) which returns the probability

of target Tj being at location q at time t + s. For brevity,
we note this value as P(t+s)

jq .
The goal is to incrementally learn the probabilistic model

for each target as it moves within the environment, using the
information of N previously observed target trajectories Ti

in the same environment, T = {T1,T2, . . . ,TN}.
The performance of the trajectory prediction method is

measured using the expected value of distance between
the prediction and the actual location of the target. More
precisely, using the law of the unconscious statistician, the
prediction error E(t+s)

j for location p
(t+s)
j of a test trajectory

Tj , at time t+ s, is defined as:

E
(t+s)
j =

∑
q∈Ξ

P(t+s)
jq

∥∥∥q− p
(t+s)
j

∥∥∥
2
, (1)

where the sum of the Euclidean distances (|| · ||2) between
the actual location of the target and all possible positions q
in the environment is weighted by the predicted probability
P(t+s)
jq that the target will be at position q. The goal of the

prediction method is to identify the prediction mechanism
which gives the minimum value for the prediction error:

P∗(t+s)jq = argmin
P(t+s)

jq

E
(t+s)
j . (2)

III. THE PROPOSED METHOD

We propose to carry out the prediction using the similarity
measure between the trajectories. The principal assumption
is that the similarity between the previous locations and
displacements of two trajectories is directly related to the
closeness of their future locations. The main problem is how
to define the similarity between two trajectories.

More formally, at a time step t, we wish to measure
the similarity S(T

(t)
j ,Tm) between the current state T

(t)
j

of an ongoing trajectory and the whole history of another
trajectory Tm ∈ T. Then, we form a four dimensional

space, where the state of a trajectory at one time step
is represented by a point in this space, consisting of its
current location p

(t)
j = (x

(t)
j , y

(t)
j ) and its most recent

displacement ∆p
(t)
j = (∆x

(t)
j ,∆y

(t)
j ). As a result we have

T
(t)
j = {x(t)

j , y
(t)
j ,∆x

(t)
j ,∆y

(t)
j }.

In the mentioned four dimensional space we estimate
the density of trajectory Tm, and we define the similarity
between the state of trajectory Tj at time t, as its value
within the density estimated for the trajectory Tm. More
formally we have:

S(T
(t)
j ,Tm) = F̂Tm(T

(t)
j ), (3)

where S(., .) is the similarity function and F̂Tm
(T

(t)
j ) is

the density estimated for trajectory Tm evaluated at point
T

(t)
j . For density estimation, we use the non-parametric

multivariate kernel method. More precisely we have:

F̂Tm
(z) =

1

nm

nm∑
t=1

K(T(t)
m , z,hm), (4)

where nm is the total number of displacements of target Tm

and hm = {h1, h2, h3, h4} are the bandwidth parameters for
trajectory Tm along the four mentioned dimensions. These
parameters define the length-scale of the function for location
and displacement, respectively. Informally speaking, h1, and
h2 define how far two locations should be in the environment
to be considered far (along the x and y dimensions), and
h3, and h4 define how much the directions of the two
displacements should diverge before they are considered
different (along the ∆x and ∆y dimensions).

For the kernel function K(., ., .), we use the normal
distribution defined as:

K(z, z′,h) =

4∏
d=1

1

hd
K

(
zd − z′d
hd

)
, (5)

K(u) =
1√
2π

exp

(
−u

2

2

)
. (6)

A. The problem of missing observations

The mentioned similarity function is defined in four di-
mensions and therefore difficult to visualize. As a result
we present the behaviour of the similarity function in a
one dimensional space (Fig. 1). In this figure, there are
two consecutive observations at positions 1 and 5, and we
observe that the similarity is higher close to those points. In
the figure, the dotted lines represent the underlying normal
distributions we mapped over each observation.

The assumption behind the similarity function is that the
trajectory of the history target Tm has been observed at all
time steps. As we will see in Sec. IV, this is not the case in
most real datasets. In reality the time step difference between
consecutive observations of the same trajectory might be
different. For example, assume that for the data presented
in Fig. 1, the time difference between the two observations
is four time steps (instead of one). The current model is
not compatible with this assumption and therefore should
be modified. One possibility is to evenly divide the space
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Fig. 1: The behaviour of the similarity function in one
dimension.
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Fig. 2: The behaviour of the similarity function with un-
known intermediate observations and fixed bandwidth pa-
rameters.

between the two observations and add each interpolated
point as an observation. In this model all the newly created
observations would have equal bandwidth parameters h. This
model is presented in Fig. 2.

The problem with this approach is that it assumes that
the intermediate observations, which we did not actually
observe, have the same bandwidth parameter as the actual
observations we made. For the example given in Fig. 2, the
similarity at point 3 is higher than that of point 5, while we
had an observation at point 5, but none at point 3.

For that reason, we propose a model in which the band-
width parameter of the interpolated observations increase
linearly as the interpolated point is located further away
from an actual observation. Fig. 3 represents our model for
the example given before. As can be seen, the bandwidth
parameter is the same for the points where we had an
observation (points 1 and 5), and the bandwidth parameter
increases as we move away from the observations. In the
same way, we modify the similarity equation (Eq. 4), so that
the bandwidth parameter is a function of the observation,
and therefore not fixed for all points. The modified version
of the similarity equation (Eq. 4) is as follows:

F̂Tm
(z) =

1

nm

nm∑
t=1

K(T(t)
m , z,h(t)

m ), (7)
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Fig. 3: The behaviour of the similarity function with un-
known intermediate observations and variable bandwidth
parameters.

where, in the new formula, the bandwidth parameter h(t)
m is

defined for each trajectory m at each time step t.

B. Parameter estimation

The only parameters of the KDE method that should
be decided are the bandwidth parameters. As previously
mentioned, the bandwidth parameters define the distance at
which two points are considered close. Therefore, a means
of determining the value of the bandwidth parameters for the
interpolated points is needed.

We are proposing to calculate the bandwidth parameters
by first interpolating the intermediate points. Following this,
the bandwidth parameters are computed by maximizing a
leave-one-out cross-validation likelihood:

F̂Tm−i(Tm) =
1

nm − 1

nm∑
t=1,t6=i

K(T(t)
m ,T(i)

m ,hm). (8)

In other words, in order to evaluate a parameter hm for
trajectory Tm, only one of the displacements of the trajectory
(T(i)

m ) is removed from the summation and the likelihood
of the similarity function is evaluated at that point. For a
given bandwidth parameter, the process is repeated for all
displacements in the trajectory. Therefore the final process
is:

nm∏
i=1

F̂Tm−i(Tm) =

1
(nm−1)nm

nm∏
i=1

nm∑
t=1,t6=i

K(T
(t)
m ,T

(i)
m ,hm).

(9)

In the given formula the multiplicands are usually small
and the final product leads to underflow. Therefore it is more
convenient to maximize the log of the likelihood:

nm∑
i=1

log
[
F̂Tm−i(Tm)

]
= −nm log (nm − 1)+

nm∑
i=1

log

[
nm∑

t=1,t6=i
K(T

(t)
m ,T

(i)
m ,hm)

]
.

(10)

Taking the derivatives of the given formula with respect
to the bandwidth parameters leads to complex equations,
which cannot be solved in a closed form. Therefore, we are



proposing to adjust the parameters of the method by a line
search conducted within the range [1, 20] in increments of
0.5, independently for each bandwidth parameter. Indeed,
according to our formulation of the Gaussian kernel (see
Eq. 5), the effect of each bandwidth parameter on the
likelihood is not related to the others. The best value for each
bandwidth parameter is chosen as the value of the parameter
for each trajectory.

Notice that the mentioned formula defines the bandwidth
parameter for the observed points. For each interpolated
point, we define a level property L(T

(t)
j ), which measures

the distance between the mentioned point and the closest
observed point. For the example given in Fig. 2, points 2
and 4 have level 2, and point 3 has level 3. The observed
points (1 and 5) both have level 1. Using this formula the
bandwidth parameter is defined as:

h
(t)
j = L(T

(t)
j )× hj , (11)

where hj is the base bandwidth parameter calculated using
the method proposed in Eq. 10.

C. Prediction using the similarity function

Once the similarities have been calculated, at each time
step, the similarity function behaves as a weighting parameter
that can be used to predict the future locations of target T(t)

j

as a weighted sum of the trajectory of the previous targets.
More precisely we have:

w
(t)
ji =

S(T
(t)
j ,Ti)∑

Tm∈T
S(T

(t)
j ,Tm)

, (12)

where w(t)
ji is the normalized similarity between the displace-

ment of target Tj at time t and the whole trajectory Ti ∈ T.
Using this formulation, the future location of a target is a
discrete probability distribution over environment Ξ, where
the probability of the target associated with Tj being at each
location q ∈ Ξ after s time steps from current time t is
defined as:

P(t+s)
jq =

∑
Tm∈T

w
(t)
jm1(T(θ∗+s)

m ,q), (13)

where function 1(T
(θ∗+s)
m ,q) returns one if the target that

generated Tm was at location q at time θ∗ + s, and zero
otherwise.

In order to predict the next locations of trajectory T
(t)
j

at each time step among all of the displacements T
(θ)
m of

a sample trajectory Tm, the displacement which is most
similar with the current displacement T

(t)
j of target Tj

should be found. This most similar displacement occurs at
time step:

θ∗ = argmax
θ

S(T(θ)
m ,T

(t)
j ). (14)

The whole process of trajectory prediction and perfor-
mance evaluation is shown for a simple example in Fig. 4. As
before, Tj is the test trajectory for which we want to predict
future locations, and we have the history of two reference

Fig. 4: Target trajectory prediction process.

trajectories T1 and T2. We will use the reference trajectories
for predicting the location of the test trajectory. Target Tj

is currently at the third time step, t = 3, and we want to
determine its location after four time steps, s = 4.

First, the similarity between the last displacement of
the test trajectory (T(3)

j ) and the reference trajectories is
calculated. Let us assume that S(T

(3)
j ,T1) = 0.2, and

that S(T
(3)
j ,T2) = 0.3. Therefore (using Eq. 12) we have

w
(3)
j1 = 0.4, and w

(3)
j2 = 0.6. Next, we use Eq. 14 to

determine the displacements in the reference trajectories that
maximize similarity with the current displacement of the test
trajectory (T(θ∗)

1 , T(θ∗)
2 ). A non-zero prediction probability

is assigned to the two reference trajectories, which are used
to predict the future locations of the test trajectory (T(7)

j ).
To evaluate the performance, the distance between our

prediction and the actual location of the test trajectory is
calculated (‖q1−p

(7)
j ‖2,‖q2−p

(7)
j ‖2). Based on this result

the performance of our prediction would be E(7)
j = 0.4 ×

‖q1 − p
(7)
j ‖2 + 0.6× ‖q2 − p

(7)
j ‖2.

IV. EXPERIMENTS

In the following, we are presenting an experimental
comparison of the proposed KDE-based similarity measure
with two other well-known similarity measures, LCSS and
PCA. Three different experimental settings are tested, one
with simulated trajectories that we have designed and two
configurations based on datasets of real targets tracked in
2D.

The trajectory prediction is computed in an online fash-
ion. Thus, the history of reference trajectories T begin by
containing the first trajectory T = {T1}. Then, every time a
new trajectory Tj appears in the environment, its trajectory
is predicted using the reference trajectories in T, and once
its trajectory is completed, it is added to the reference
trajectories T = T ∪Tj .

As mentioned previously in Sec. III-A, in most real
datasets the time difference between consecutive displace-
ments of trajectories is not constant. This is why the variable
bandwidth parameter was defined for the kernel density
estimation method. This is also the case for the two real
datasets we present here. In our experiments, we used
only the trajectories for which the time difference between
consecutive displacements is less than 10 time steps. If the



Fig. 5: ULaval campus map and simulation setting. Eight
gates are used, each gate is represented by a cyan circle.
Targets can enter through any of the eight gates, walk around
the campus and exit the environment through another gate.
The pedestrian paths inside the campus are shown using the
dashed black line. The target follows the path to move from
one gate to another. The white line represents the trajectory
of a sample target.

time difference is more than 10 time steps, we split the
trajectory into two trajectories, and treat each one as an
independent trajectory. The reason for this selection is that if
the time difference is more than 10 time steps, the two parts
of the trajectory can diverge so much that it is not feasible
to consider them as a single trajectory.

As the final criteria, we only select the trajectories whose
length is at least 35 steps. The reason is that in real datasets,
there are some short trajectories which do not add useful
information for the prediction of other trajectories, and
therefore we did not include them in the dataset.

A. ULaval campus simulated dataset

This simulated dataset was generated by simulating pedes-
trians walking on part of the Université Laval campus, in
Québec City, Canada. The environment is shown in Fig. 5.
In this figure, the blue colour represents the buildings, green
represents the street and parkings, and red is the ground. The
target enters the environment through one gate of a building
(cyan circles in the figure), walks inside the environment,
and exits through another gate. The trajectory of each target
is generated based on its current location and the temporary
goal location it is aiming at, which is based on the shortest
path between the initial and final gates on the pedestrian
path. The pedestrian path in the figure is represented by the
dashed black line. In the simulation, the pedestrian path is
represented as a graph with intersections being the vertices
and the paths themselves being the edges. Each intersection

Fig. 6: MIT Trajectory dataset [10]. Trajectories were gen-
erated from real targets moving in a parking lot within
five days. One thousand of the 36 075 trajectories used for
experiments are shown in the image.

(vertex) on the shortest path between the two gates can
be a temporary goal for the target. In order to add some
randomness to the system, and to make the simulation more
realistic, the targets sometimes skip a temporary goal (vertex)
in their shortest path and go directly to the next vertex. In
the figure, this phenomena is shown at the bottom, where the
target diagonally crosses the street.

At each time step, the next location of a target is randomly
chosen from a distribution that results from the (normalized)
multiplication of a beta and a Gaussian distribution. More
precisely, at each time step, a normal distribution is applied
on the angle between the target’s location and its temporary
goal, and a beta distribution is applied on the distance to
determine the step size. Parameters are α = 2 and β = 2 for
the beta distribution and µ = 0 and σ2 = 125 for the normal
distribution. We produced a total of 1000 trajectories for our
experiments.

B. MIT trajectory dataset

The MIT Trajectory dataset [10] contains information
concerning the trajectories of 40 453 targets moving in a
parking lot. The information was gathered using a single
camera for five days. Using the criteria mentioned in the
beginning of the section we selected 36 075 among all of
the trajectories in the dataset. The parking lot and 1000 of
the chosen trajectories used for our experiments is presented
in Fig. 6.

C. Train station dataset

The Train Station dataset [12] contains the trajectories
of 47 866 targets moving in the New York Grand Central
Station. The data comes from a 30 minute video with a
resolution of 480 × 720 pixels at 24 fps. Similarly to the
parking lot dataset, only those trajectories who satisfied the
criteria of time difference between consecutive displacements



Fig. 7: Train Station dataset [12]. The trajectories were
generated from the targets moving in the train station within
30 minutes. A thousand of the 46 741 trajectories used for
experiments are shown in the image.

were extracted and used for the simulations in this paper,
resulting in a subset of 46 741 such trajectories. The train
station and 1000 of these trajectories are shown in Fig. 7.

D. Longest common subsequence (LCSS)

The proposed similarity measure given in Eq. 7 is com-
pared with the well-known similarity measure called Longest
Common Subsequence (LCSS) algorithm [9]. It consists in
identifying the longest similar subsequence between two
trajectories using dynamic programming. More precisely, for
two trajectories that end with states T

(x)
i and T

(y)
j , the

recursive LCSS function is defined as:

LCSSε,δ(T
(x)
i ,T

(y)
j ) =

0 if x < 1 or y < 1

1 + LCSSε,δ(T
(x−1)
i ,T

(y−1)
j ))

if ‖p(x)
i − p

(y)
j ‖2 < ε and |x− y| < δ

max(LCSSε,δ(T
(x)
i ,T

(y−1)
j ), LCSSε,δ(T

(x−1)
i ,T

(y)
j ))

otherwise

,

(15)

where ε defines the maximum acceptable distances between
corresponding target positions, and δ is the maximum allow-
able time warp. From this definition, the similarity between
two trajectories is defined as:

S(Ti,Tj) =
LCSSε,δ(T

(ni)
i ,T

(nj)
j )

min(ni, nj)
. (16)

For our experiments, we replace the KDE-based measure
of Eq. 12 by the LCSS-based one, and allow the other
equations to be the same for the two methods. The hyper-
parameters δ and ε of the LCSS method were optimized by
trial-and-error through a grid search. The δ parameter was
defined as a function of the length of the two trajectories
that the LCSS algorithm was applied to. The same value for
the δ parameter was derived for all the datasets, that is 20%

of the maximum length of the two trajectories, in line with
the suggestion made in [9]. For the ε parameter, different
values were derived for each dataset, that is εsim = 1 for the
ULaval Campus dataset, εMIT = 5 for the MIT Trajectory
dataset, and εstation = 31 for the Train Station dataset.

E. PCA-based similarity

We also compared our proposal with a second approach to
evaluate the similarity between different trajectories, using
the Euclidean distance between the Principal Component
Analysis (PCA) coefficients of the trajectories [1]. For this
purpose, all trajectories are first resampled to the median
size of the trajectories in the dataset, in order to resize
trajectories to the same length. Then, a PCA is applied to
these trajectories (PCA is applied separately to x and y
coordinates of each trajectory). The number of coefficients
kept from the PCA was selected in order to retain at least
95 % of the variance (denoted by K for each dataset). From
this, the following similarity measure is devised:

S(Ti,Tj) =
1∑K

k=1

[
(γkx)2 + (γky )2)

]
+ 1

, (17)

where γkx and γky are the distance between the k-th PCA
coefficient of the two trajectories along the x and y axes.

In our experiments, we observed that matching a full
trajectory Ti with part of another trajectory Tj using the
PCA method produces poor results. Therefore, in Eq. 17,
we evaluated the similarity between the sub-trajectory of the
two trajectories. In other words, assuming that the test target
Tj is at time step t, when computing the similarity between
this target and another target Ti, we consider only the first t
displacements of the two trajectories for the PCA calculation.

V. RESULTS

Four different configurations were used for the experi-
ments. In each setting, t shows the current time in the test
trajectory, and s is the number of time steps in the future.
For example, when t = 5 and s = 10, the target is at the
5-th time step and we want to predict its location at the 15-th
time step.

The similarity based prediction method presented here
is categorized as a non-parametric method. Therefore, the
performance of the mentioned methods depends on the size
of the history of reference trajectories used for prediction.
We performed some experiments and observed that as the
size of the history of reference trajectories exceeds 1000
trajectories, the increases in size does not significantly affect
the performance of the prediction method (see Fig. 8 and
9). Therefore, the trajectory history was maintained as a
sliding window with the size of 1000. This means that at
each time step, in order to predict the trajectory of a new
target, only the trajectories of the previous 1000 targets are
used. In this manner, the prediction time for each trajectory
remains manageable for the large datasets (MIT and Train
Station).

The performances of the KDE, LCSS, and PCA prediction
methods are reported in Table I. Each method was run
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Fig. 8: Effect of the sliding window size on the performance
of different prediction methods over the MIT trajectory
dataset.
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Fig. 9: Effect of the sliding window size on the performance
of different prediction methods over the Train station dataset.

30 times, where each run used a different order for the
processing of the trajectories, although the same order was
used for each method to be fair. Therefore, at each run for
KDE, LCSS, and PCA a different set of trajectories were
used for the prediction of each trajectory. Reported results are
average performances over 30 runs. In this table, the average
distance between the prediction made by each method and
the actual location of the target is reported (as defined by
Eq. 1).

It can be seen that the KDE method outperformed the
LCSS and PCA methods considering the error measure on
all datasets and with all simulation settings. The reason for
the strong performance of the KDE method is twofold. First,
the KDE method is the only method which considers both the
location and the displacement in the similarity function. The
addition of displacement in the similarly function helps the
KDE method to differentiate more clearly between targets

TABLE I: Average error, standard deviation of error, and
CPU time using KDE-, LCSS- and PCA-based trajectory
similarities. Error values are calculated using Eq. 1, smaller
values are better. CPU time is the Wall Clock time needed to
estimate the location of one target. Tested settings correspond
to different current times (t) and prediction time steps (s).
Bold values represent statistically significant results accord-
ing to the Wilcoxon signed-rank test (p-value=0.05) when
compared pairwise with both other methods.

t = 5 t = 5 t = 15 t = 15
s = 5 s = 20 s = 5 s = 20

ULaval Campus simulated dataset

KDE
Avg. err. 10.04 m 44.18 m 11.45 m 35.52 m
Stdev. err. 0.27 m 1.2 m 0.3 m 0.74 m
CPU time 4.0 s 4.5 s 3.5 s 3.5 s

LCSS
Avg. err. 15.62 m 53.66 m 31.18 m 67.22 m
Stdev. err. 0.34 m 1.2 m 0.38 m .92 m
CPU time 1.5 s 1.5 s 4.0 s 4.0 s

PCA
Avg. err. 15.7 m 55.22 m 21.04 m 51.16 m
Stdev. err. 0.4 m 0.87 m 0.6 m 1.05 m
CPU time 1.0 s 1.0 s 1.5 s 1.5 s

MIT Trajectory dataset

KDE
Avg. err. 11.91 p 26.0 p 10.95 p 24.10 p
Stdev. err. 0.7 p 0.6 p 0.4 p 0.6 p
CPU time 4.0 s 4.0 s 4.0 s 3.8 s

LCSS
Avg. err. 27.62 p 37.61 p 28.73 p 40.72 p
Stdev. err. 1.2 p 1.8 p 0.9 p 0.6 p
CPU time 1.4 s 1.5 s 4.4 s 4.3 s

PCA
Avg. err. 31.58 p 44.41 p 36.12 p 48.62 p
Stdev. err. 0.9 p 0.6 p 1.8 p 0.5 p
CPU time 1.0 s 1.0 s 1.5 s 1.5 s

Train Station dataset

KDE
Avg. err. 12.99 p 17.86 p 12.66 p 18.06 p
Stdev. err. 0.4 p 0.51 p 0.41 p 0.6 p
CPU time 4.5 s 4.9 s 4.8 s 4.7 s

LCSS
Avg. err. 30.42 p 31.17 p 34.52 p 36.42 p
Stdev. err. 0.2 p 0.1 p 1.4 p 1.0 p
CPU time 2.4 s 2.3 s 4.0 s 4.1 s

PCA
Avg. err. 52.01 p 55.98 p 53.0 p 57.71 p
Stdev. err. 0.6 p 0.6 p 0.4 p 0.8 p
CPU time 1.0 s 1.0 s 1.5 s 1.5 s

which pass through the same location in the environment
but in different directions (or the same direction but with
different speeds).

Secondly, KDE is the only probabilistic method among
the three. The probabilistic foundations of the method helps
it to make smoother decisions while estimating similarity.
For example, through its ε and δ parameters, the LCSS
method makes binary decisions in matching the subparts
of two trajectories. Thus if the distance between two parts
is less than the mentioned parameter values the two parts
are similar and not otherwise. In contrast, the similarity
measure defined by the probability density function of the
KDE method changes more smoothly from one to zero.

In general, we observe that the PCA method’s performance
is inferior to that of the other two methods. One reason
could be that in PCA, as mentioned before in section IV-
E, new trajectories are matched with the beginning sub-part
of the trajectories in the history dataset. In consequence,
there can be trajectories of different size with different PCA
coefficients, even if the two trajectories had some common



sub-parts.
Considering the computational demand, PCA is the least

computationally expensive method. The computational cost
of the LCSS method depends on the prediction times. For
the smaller prediction times (t = 5), the computational
cost is comparable with the PCA method, but for the larger
prediction times (t = 15), the computation time is similar to
that of the KDE method.

In all settings, increasing the prediction time step from
(s = 5) to (s = 20) has increased the expected error,
which is reasonable – predicting further into the future
increases the uncertainty. The interesting point is that for
each dataset, increasing the prediction time step has roughly
the same effect over different methods (i.e., the increase of
the expected error is comparable for different methods over
one dataset). This suggests that the properties of the dataset
(i.e., nature of the trajectories composing the dataset) has a
more significant impact over long term prediction accuracy
than the prediction methods. For example, the simulated
dataset has the largest drop in performance between the
short (s = 5) and long (s = 20) prediction time steps.
This could be related to the fact that the targets change
direction more frequently in the simulated dataset than in
the other two datasets. In this dataset, targets share part of
their trajectory with many other targets, unlike the other two
datasets, where each target usually keeps the initial direction
of its movement.

Another interesting observation is that the increase of the
prediction time from (t = 5) to (t = 15) has decreased
the performance of the LCSS and PCA algorithms, but in
most cases improved the performance of the KDE algorithm.
When increasing the prediction time, each algorithm has
more information to process. If done properly, as in the case
of KDE, this leads to a decrease in the number of false
positives (wrongfully considering two trajectories similar,
while they are not). Otherwise, as in LCSS and PCA, this
only increases the confusion of the overall algorithm, and
reduces the performance of the system.

Another explanation is that KDE has a mechanism to
deal with missing data points by taking into account the
uncertainty (i.e., variance) over the estimated location of
the target, while the two other methods rely only in the
interpolated positions. That could be the reason that the
performance of different methods is closer on the simulated
dataset (in which there is no unobserved trajectory) compared
to the two other real datasets where there are unobserved
points.

VI. CONCLUSION

This paper has presented a model to measure similarity
between trajectories of targets moving inside an environment
using the kernel density estimation. The effectiveness of
the proposed model is shown in the trajectory prediction
problem. The goal in trajectory prediction is to estimate the
future location of a new target moving in an environment
using the history of previous trajectories that were observed
so far in the same environment.

For experiments conducted on one simulated and two
real datasets, the proposed model was compared with two
other commonly used methods, namely PCA and LCSS,
for measuring the similarity between trajectories. Results
showed that although the proposed approach is slightly more
expensive in terms of computation time, it outperformed both
of the other methods over all tested datasets and simulation
settings. The strong performance of the method is related to
its probabilistic nature and consideration of the displacement
in the similarity function.
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