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Abstract— This paper proposes a complete system for
robotic sensor placement in initially unknown arbitrary three-
dimensional environments. The system uses a novel approach
for computing the quality of acquisition of a mobile sensor
group in such environments. The quality of acquisition is based
on a geometric model of a camera which allows accurate
sensor models and simple occlusion computation. The proposed
system combines this new metric with a global derivative-free
optimization algorithm to find simultaneously the number of
sensors and their configuration to sense accordingly the envi-
ronment. The presented framework compares favourably with
current techniques working in two-dimensional environments.
Furthermore, simulation and experimental results demonstrate
the ability of the system to cope with full three-dimensional
environments, a domain still unexplored by previous methods.

I. INTRODUCTION

Recent advances in mobile computing and miniaturized
robotics allow groups of small and relatively simple robots
to accomplish tasks that a single sophisticated robot could
not achieve alone. The robustness, flexibility, and scalability
features of multirobot systems [1] make them well-suited
for inspection and surveillance applications. For instance, a
group of robots could be deployed to explore hazardous or
remote environments, such as defective nuclear power plants
(e.g., Fukushima) or outer space sites (e.g., Mars).

This work focuses on automatic placement of a group
of mobile sensors in initially unknown arbitrary three-
dimensional environments. More specifically, we are moti-
vated by telepresence applications where an external user
investigates a scene that is inaccessible to humans. By
moving a virtual sensor sv in the environment, this user can
define the scene he wants to observe. The virtual sensor is a
tool manipulated by the user just as a standard camera would
be, but it is not limited by physical constraints. Therefore,
it can be placed anywhere in the environment and have
unrealistic parameters such as a very high resolution and
very large field of view. The problem we tackle in this
work is to automatically deploy a fleet of mobile robots
(with potentially low resolution sensors) to acquire all the
information contained in the region of interest designated by
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the virtual sensor sv with a minimal number of sensors. Our
method can be applied to any generic cost function capturing
different aspects of the environment. However, in this paper,
we are specifically interested in the visual inspection of an
environment. Thus, the cost function will be tied to the
satisfaction of a desired pixel density, which is defined as
the number of pixel observing a given surface.

Related problems have been approached from different an-
gles in the sensor placement literature. In Sec. II, we review
recent work in the next best view and sensor network research
area that inspired this work. To solve our formulation of the
sensor placement problem, we first introduce, in Sec. III,
the pixel density measure to efficiently quantify a camera’s
ability to observe a general three-dimensional space. Then,
we present, in Sec. IV, a combination strategy to merge
the acquisition performance of many sensors into a single
quality measure for all the sensors. Afterwards, we describe
in Sec. V a novel divide-and-conquer optimization approach
for sensor placement that allows the simultaneous identifi-
cation of the right number of sensors and their position.
Finally, in Sec. VI and VII, we present simulations and
real world experiments that compare the proposed framework
performance against established methods.

II. RELATED WORK

The problem addressed in this work is closely related
to the well-known art gallery problem, which consists of
watching over an entire art gallery with a minimal number
of guards. In this paper, not only do we want to observe
an entire region of interest defined by virtual sensor sv, but
we also require this target to be sampled at a given pixel
density. Thus, concepts from sensor placement and visibility
estimation are combined in a global optimization framework
to solve our problem.

On the one hand, Next Best View (NBV) strategies ad-
dress the coverage problem by searching greedily for the
next sensor position that maximizes the acquisition of the
unobserved volume based on past observations. The search
is made by simulating views of the sensor in an environment
model built online. Deterministic solutions to this problem
are presented in [2,3] using an enclosing sphere around the
object to be observed and cutting the unoccupied volume
as it is sensed. This enclosing sphere hypothesis has been
used jointly with a stochastic optimization for view planning
[4]. It was proposed later to use NBV planners to cover an
indoor environment with a mobile robot, dropping altogether
the enclosing volume hypothesis [5,6]. These planners deal



poorly with multisensor scenarios since they tend to fragment
space and require a greater number of views than the optimal
solution.

On the other hand, the sensor network literature solves
the sensor placement problem in multisensor scenarios by
relying on the gradient of an observability function shared
by all sensors. Climbing the gradient for each sensor results
in maximizing the visibility of the whole network. A first
type of gradient method allowed the deployment of a mobile
sensor network following a potential field induced by the
environment bounds and the other sensors [7]. A second type
of gradient has been derived from the Voronoi decomposition
of the environment where each Voronoi cell, centred on
a sensor, is moved following a utility function [8]. These
gradient methods have been combined to allow convergence
to either types of gradient through a parameter [9]. This
unification allowed positioning of quadrotor helicopters to
observe a planar environment entirely [10]. However, these
approaches are limited by the fact that, in arbitrary three-
dimensional space, occlusions create artifacts causing the
derivation of the cost function to be dependent on the
geometry of the environment.

While NBV strategies provide a means to compute the
quality of a sensor’s position given its model and the environ-
ment, gradient methods propose ways to combine multiple
sensors and obtain solutions with fewer viewpoints. We claim
that combining these concepts helps to solve multisensor
placement in general three-dimensional spaces. In fact, we
show in the next sections that embedding the combination
function of gradient methods in the NBV quality estimation
framework enables the optimization of viewpoints.

III. CAMERA PIXEL DENSITY

The visual inspection of an environment requires the
observation of its components with a desired precision.
For camera sensors, this can be measured by the pixel
density: the more pixels per unit area, the more precise the
observation is. In the remainder of the section, we develop
a complete approach to evaluate this.

We define the pixel density of a camera sensor at any point
in the environment using a pinhole camera model imaging
on a discrete sensor matrix. Let E ⊂ R3 be the environment
the robots evolve in and s ∈ P be the sensor position and
orientation, with P = Rδ representing a sensor’s δ degrees of
freedom. A sensor footprint F comprises every point p ∈ E
inside its field of view which is visible from its position.

A two dimensional cut of a directional sensor viewing
frustum is shown in Fig. 1(a). To compute pixel density
d(s,p) of sensor s at p, we compute the area of a footprint
∂f ⊆ F containing a constant number of pixels and
subtended by angles ∂θ and ∂φ, which are fractions of the
sensor’s field of view Θ by Φ. We assume that ∂f is small
enough to be planar at p.

The plane supporting ∂f is given by (q−p)·n = 0, where
q 6= p is any 3D point on that plane and n is its normal.
This plane is the base of a pyramid of vision associated with
p, as shown in Fig. 1(b). The pyramid edges r1 to r4 are
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Fig. 1. (a) Two dimensional cut of sensor s viewing pyramid and footprint
∂f covering point p ∈ E (Φ and ∂φ are hidden by the orthogonal
projection); (b) Components required to compute the area of ∂f at p (for
readability, only r3 is annotated).

given by rotating r0, a vector between sensor s and point p,
by extrinsic rotation matrices of angle ±∂φ2 and ±∂θ2 .

r1 to r4 intersect the plane at points p1 to p4 respectively,
giving the four corners of the convex polygon ∂f . The
corners are pk = δk · rk with k = 1, . . . , 4 and δk = p·n

rk·n .
The area of ∂f is thus given by

a(s,p) =
‖p1p4‖‖p2p3‖

2
sinϕ, (1)

where ‖·‖ is the norm of a vector and ϕ the angle between
vectors p1p4 and p2p3. Finally, the pixel density d(s,p) of
sensor s with focal length f and pixel size u× v at point p
is given by

d(s,p) =

{ ρ
a(s,p) if v(s,p) is true

0 otherwise
, (2)

where v(s,p) is a Boolean visibility function that is true
when p can be seen by sensor s and false otherwise, and

ρ =
4f2 tan

(
∂θ
2

)
tan

(
∂φ
2

)
uv

. (3)

Therefore, (2) has four elements: the sensor intrinsic param-
eters, the visibility between s and p, the distance between
these two points, and the environment surface normal. The
first variable is constant for a sensor, and the other three can
readily be extracted from a geometric representation of the
environment such as an occupancy octree [11].

IV. VISIBILITY COST FUNCTION

As mentioned earlier, evaluating the views one at a time
and selecting the next best point of view to place the
next sensor causes a fragmentation problem that leads to a
resulting sensor network much larger than the optimal size.
This section describes the original cost function that was
developed to solve the sensor placement problem outlined in
the introduction.

We recall that the problem is to place a sensor network
S = {s1, s2, . . .} so that a region of interest I ⊆ E , delimited
by the view of a virtual sensor sv, is observed with the



requested pixel density. We evaluate the placement quality
of a given network S as:

f(sv, S) =

∫
I
fe(sv, S, i) di, (4)

where fe(sv, S, i) reports the error between the pixel densi-
ties of sv and sensor network S at point i ∈ I. This translates
into the following minimization problem:

min
S∈S

f(sv, S), (5)

s.t.
f(sv, S\si)− f(sv, S)

1− f(sv, S)
≥ Tc, ∀si ∈ S, (6)

where S is the possible sensor network domain. Equation (6)
enforces the constraint that all sensors making the network
S should make a relative reduction of the error by at least a
value of Tc. Stated otherwise, we do not want to use more
sensors than necessary, such that the contribution of each
unit to the performance of the network should be above a
given value.

We propose to use the bounded error function

fe(sv, S, i) = max

(
0,
d(sv, i)− fc(S, i)

d(sv, i)

)
, (7)

where the maximum operation between 0 and the normal-
ized difference is capped by the highest density requested
and fc is a function combining the sensors pixel density.
This characteristic helps to focus on regions where desired
pixel density is not reached, rather than improve a part of
the sensor field that is already observed with the desired
resolution.

The last component of the cost function is a combination
function fc(S, i) that computes the global pixel density for a
group of sensors where more than one sensor observe the
same point. [9] proposed the use of a p-norm to merge
the pixel densities. Given that we are basically interested
in covering the region of interest, we chose p = ∞ so that
only the sensor observing the point with the greater density
is retained:

fc(S, i) = max
si∈S

d(si, i). (8)

That way, no assumption is made on the underlying merging
algorithm, which should perform at least as well as the single
best sensor observing this part of the environment.

Unfortunately, arbitrary three-dimensional environments
contain occlusions that make it difficult to compute the ge-
ometry of I to find an analytical solution to (4). Nonetheless,
we can rely on Monte Carlo numerical integration to find a
solution to our problem, transforming the integral in (4) into

f̂(sv, S) =
1

m

m∑
j=1

fe(sv, S, ij), (9)

with points ij ∈ I being random samples taken such that
their corresponding positions are uniformly distributed over
the camera image sensor. The impossibility to define the
geometry of I in arbitrary three-dimensional environments
also prevents the derivation of the cost function f̂ , thus

forbidding the use of optimization algorithms requiring the
computation of derivatives (e.g., Jacobian matrix). The next
section presents an derivative-free optimization algorithm to
solve our sensor placement problem.

V. OPTIMIZING SENSOR PLACEMENT

The modelling presented in the previous section provides
a realistic and precise way to evaluate sensing performance
over the region of interest in an unknown environment. How-
ever, as stated before, gradient-based optimization cannot be
used as is. We propose to integrate the sensing model in
a divide-and-conquer derivative-free optimization algorithm
tailored to sensor placement. This is achieved by merging
two existing algorithms, namely CMA-ES, which is used to
optimize the configuration of each sensor individually, and
cooperative optimization, which allow a joint optimization of
all sensors, where sensors can be added and removed on the
fly. The amalgam of these two optimization approaches is
novel to the best of our knowledge, while being particularly
fit for sensor placement optimization in the proposed context.

A. Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [12] is a derivative-free global optimization tech-
nique that uses self-adaptation of a multivariate normal
search distribution to maximize the probability of generating
fitter candidate solutions. It is one of the most powerful
black-box optimization algorithms available in the litera-
ture [13]. In its (1 + λ) form used here, the CMA-ES
algorithm creates, at every iteration, λ independent candidate
solutions

sj = sbest + υ, ∀j ∈ {1, . . . , λ}, (10)

where sbest is the best solution obtained at the last iteration,
and υ ∼ N

(
0, σ2C

)
a random variable following a multi-

variate normal distribution. From these λ variations, statistics
are evaluated at each iteration to adjust the covariance matrix
C and the step size σ according to the feedback received
from the cost function. For more details on CMA-ES the
reader is referred to [12].

In our sensor placement problem, a CMA-ES solution s
stands for the complete set of parameters of a single sensor.
In the next section, we explain how these strategies cooperate
and enable the placement of several sensors.

B. Cooperative Optimization

Cooperative optimization decomposes an optimization
problem into subproblems automatically and combines the
subsolutions to form an optimal global solution [14]. In our
case, the sensor configurations s are the subsolutions, which
are optimized separately into what is called a species, noted
S. Cooperation between the species to form a sensor network
occurs only at evaluation time, where each candidate solution
sij ∈ Si is combined with a representative hk from each of
the other species to assess its quality.

In our context, the quality assessment of a candi-
date solution sij is conducted using (9), in which S =
{h1, . . . ,hi−1, sij ,h

i+1, . . . ,hn}. The representative set



1 initialize P← {Si : i = 1, . . . , n};
2 choose H← {select random(Si) : i = 1, . . . , n};
3 while ¬stop do
4 foreach species Si ∈ P do
5 Si ← variate

(
hi,N (0, (σi)2Ci)

)
;

6 evaluate(Si,H\hi);
7 σ′ ← σi; C′ ← Ci;
8 update the step size σ′;
9 if ∃j : f

(
sij
)
≤ f

(
hi
)

then
10 hi ← arg minsij∈Si f(sij);
11 update covariance matrix C′;

12 if diag((σ′)2C′) > γ then
13 σi ← σ′; Ci ← C′;

14 H← {select best(Si) : i = 1, . . . , n};
15 if improvement < Ti then
16 remove species in P with contribution < Tc;
17 H← H\H−;
18 for i = 1, . . . , n do
19 σi ← 2σi;

20 add a new species P← P ∪ {S′};
21 H← H ∪ {select random(S′)};

Alg. 1. Cooperative coevolution with (1 + λ)-CMA-ES.

H = {h1, . . . ,hn} is composed of the best candidate of each
species. At all time, H represents the candidate configuration
of the sensor network.

The proposed cooperative framework with the incorpo-
rated CMA-ES steps is presented in Alg. 1. To begin with,
a population P is initialized randomly with n species Si.
One representative hi of each species is copied in H. The
optimization loop begins at line 3 where, in turn, each species
is given a chance to optimize the position of the sensor
it represents. At line 5, candidate solutions are generated
by varying the species representative hi using the usual
CMA-ES procedure. Then, these solutions are evaluated in
cooperation with H excluding hi at line 6 and the species’
CMA-ES parameters are updated at lines 7 through 13. On
lines 9 to 11, the representative hi of species i is replaced
by the best variation sij ∈ Si if it has a better fitness.

CMA-ES is known for its log-linear convergence to optima
due to the shrinking of its sampling distribution N . This
contraction is desirable up to a certain level in cooperative
optimization, as too small a sampling distribution prevents
coadaptation between species. Thus, we introduce (lines 12
and 13) a mechanism to prevent contraction of the sampling
distribution when any element on the diagonal of (σ′)2C′

falls below a given threshold γ.
Once an iteration of single sensor optimization is com-

pleted for each species, their current best solution is copied
into H. Then, improvement is verified at line 15. If the global
solution quality, evaluated over H with (9), has not improved
by a given threshold Ti in the last I generations, the system is
considered as stagnating. In this case, unproductive species

(i.e., those contributing less than a threshold Tc) are removed
from P along with their representative H− from H. The
relative contribution of any species Si is given by

c(Si) =
f̂(sv,H\hi)− f̂(sv,H)

1− f̂(sv,H)
. (11)

On line 19, any remaining species undergoes a diversification
step to help coadaptation of converged species to the new
configuration. Finally, a new species, initialized randomly,
is added to the population and the cooperative optimization
continues until the termination criterion is reached. The
process of removing and adding species when stagnation
occurs is pressuring the system to find useful solutions both
on number of sensors and optimal position aspects.

Another interesting feature with the proposed cooperative
optimization is that species do not need to be homogeneous.
In fact, the species are optimized in isolation and they
interact only through (9), where the sensors density are
independent. This allows P to be composed of heterogeneous
sensors with different intrinsic parameters and degrees of
freedom.

VI. SIMULATION RESULTS

We conducted two different sensor placement simulations.
The first one involves four degrees of freedom cameras
hovering over a two-dimensional nonconvex closed polygon.
This setup is similar to the one presented in [10] for their
rectangular field of view cameras. The second simulation
experiment extends our approach results to three-dimensional
environments using cameras mounted on a heterogeneous
group of aerial and ground robots in two different scenar-
ios: a disaster-stricken building and a museum. These two
different scenarios demonstrate the ability of the system to
find the ideal number of sensors and place them in different
conditions.

A. Two-dimensional Target

The first experiment allows direct comparison with the
decentralized gradient controller (DGC) [10]. In this setup,
a group of cameras mounted on aerial robots is requested
to observe entirely the interior of a nonconvex polygon. The
environment is shown in Fig. 2.

The camera parameters were set to a focal length f =
10 mm, pixel size u = v = 10µm, and fields of view Θ =
40◦ by Φ = 70◦. The optimization was conducted for sensor
positions s = [x, y, z, θ] and for a fixed number of sensors
n = 5, in an environment known a priori. Thus, for this
test, lines 15 to 21 of Alg. 1 do not execute because the
number of sensors is fixed. The sensor’s initial position x,
y was chosen randomly inside the polygon to be observed
at an altitude z between 30 and 40 cm and an orientation θ
between 0 and 360◦.

The desired pixel density d(sv, i), ∀i ∈ I for the coop-
timization controller (CC) was chosen as 0.3 Mpx/m2. The
initial standard deviation σi and covariance matrix Ci of the
CMA-ES were respectively set to 0.3 and the identity matrix
so that CMA-ES can explore the complete environment.
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Fig. 2. Median configuration found for the two-dimensional five-sensor
scenario, with the area per pixel metric [10].
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Fig. 3. (Top) Distribution of the 25 configurations found by CC according
to the normalized density error. (Bottom) Same configurations for CC and
those found for DGC according to the area per pixel metric presented in
[10], lower is better.

Parameter γ that prevents contraction was set to 0.05. The
parameters for the DGC were a = uv

f2 = 10−6, the initial
prior w = 216, and the gains k = 10−6[1 1 0.1 10−9],
which are the values used in [10] for a similar environment.
A global standard CMA-ES algorithm (Glob) has also been
used to compare the performance of CC against an algorithm
working on all sensors at once. All algorithms were stopped
when the best solution did not improve over 50 iterations.
DEAP’ [15] CMA-ES implementation was used.

Fig. 3 presents the distribution of the results achieved by
the three algorithms on the two dimensional environment
experiment. The top plot shows the results for CC and Glob
with the Normalized Pixel Density Error (NPDE) metric of
(9). It shows that CC reaches consistently better configu-
rations by working on each sensor separately compared to
Glob. Moreover, the bottom plot of Fig. 3 presents the 25
configurations for CC and Glob but with quality computed
using the area per pixel metric presented in [10]. It shows that
CC generally outperforms DGC even if the optimization are
conducted on a different metric. Fig. 2 presents the median
final configuration achieved by each algorithm. We see that
the advantage of CC comes from its ability to minimize
the overlap between the sensors view globally and lead to
their alignment with the borders of the environment. Glob
also aligns the sensors with the borders of the environment,

TABLE I
AVERAGE NORMALIZED PIXEL DENSITY ERROR AND NUMBER OF

SENSORS WHEN VARYING REQUIRED DENSITY.

Required
Density (d) Algo. Avg. (Std. dev.)

NPDE
Avg. (Std. dev.)
Num. Sensors

0.15 Mpx/m2
CC 0.0046 (0.0141) 3.60 (0.49)
DGC 0.1316 (0.0852) 4 (0)
Glob 0.0037 (0.0086) 4 (0)

0.3 Mpx/m2
CC 0.0178 (0.0323) 5.28 (0.66)
DGC 0.1566 (0.0798) 6 (0)
Glob 0.1432 (0.0106) 6 (0)

0.5 Mpx/m2
CC 0.0234 (0.0274) 7.56 (1.02)
DGC 0.2086 (0.0637) 8 (0)
Glob 0.0499 (0.0270) 8 (0)

(a) d = 0.15 Mpx/m2,
NPDE = 0.0000131

(b) d = 0.3 Mpx/m2,
NPDE = 0.0059

(c) d = 0.5 Mpx/m2,
NPDE = 0.0107

Fig. 4. Median configuration found by CC for the two-dimensional problem
when varying the required density.

but does not identify which sensors are useless (minimal
contribution), thus sometimes leaving a sensor with absolutly
no contribution. The DGC seems to have reached a local
optimum where the sensors observe a considerable amount
of space outside of the environment.

In the next simulations, we investigated the capacity of
Alg. 1 to find the required number of sensors n to observe
the entire region of interest with the correct pixel density.
The same polygon was used as in the previous experiments,
but we varied the desired pixel density d to assess how
many sensors are allocated to the task by the method. The
optimization was free to add or remove sensors when the
cost function is not lower by 2.5% than it was 5n iterations
earlier, where n is the current number of sensors (i.e., line 15
of Alg. 1). When stagnation occurs, sensors contributing less
than 1

4n to the combined solution are removed (i.e., line 16 of
Alg. 1). These parameters are chosen so that the optimization
runs long enough before adding a new sensor and each sensor
contributes relatively equally to the solution.

Tab. I presents the average final error and number of
sensors for 25 runs of the algorithms on a two-dimensional
environment with three different required densities. The
number of sensors for DGC and Glob has been chosen by
rounding up the number of sensors found by CC. The CC
algorithm equals or outperforms the two other algorithms
by using less sensors on average. Fig. 4 shows the median
configuration for each of the three sets of experiments. We
clearly observe that CC is able to find the required number
of sensors and their positions to sense the polygon with the
desired density.



Fig. 5. Three-dimensional damaged building environment.

B. Three-dimensional Targets

This section presents two scenarios demonstrating the
capacity of our framework to handle three-dimensional en-
vironments with occlusions. The setup for the full three-
dimensional simulations involved the complete physical sim-
ulation of the robots and their sensors. The Gazebo robot
simulator [16] combined with the ROS robot operating sys-
tem [17] were used for this purpose. In the simulations, each
robot was equipped with a laser range finder for localization,
mapping, and trajectory planning, and a Microsoft Kinect
to model the world in three-dimensions and act as camera
sensor. The parameters for the Kinect camera were f =
531 px, u = v = 1 px,Θ = 62◦, and Φ = 48◦. These sensors
were selected as they are commonly used on real robots,
including ours. The robots were globally localized, and their
trajectories were planned by a dynamic window approach
algorithm [18].

The a priori unknown 3D environment was handled by
alternating optimization and displacements. First, a robot was
sent to the position where the virtual sensor sv was placed
to acquire an initial 3D model of the environment. Then,
the optimization was run on this model. After 25 iterations
of the Alg. 1 main loop, robots were sent to the positions
given by the representative set H. At all times during the
simulations, all robots refined the global 3D model with the
data they captured using their 3D sensor. When the robots
completed their displacement, the optimization-displacement
sequence continued until no more improvement of the NPDE
was made over 100 iterations or the NPDE decreased below
1%.

The representation chosen to model environment was an
occupancy grid encoded as an octree [11]. This representa-
tion allows the retrieval of the necessary information required
to compute (2), i.e. the visibility, the distance, and the
orientation of the closest surface to the sensor in any given
direction. The occupancy grid was updated with the down-
sampled data obtained from the simulated noisy Microsoft
Kinect. The smallest resolution of the octree was set to 0.1 m,
which corresponds approximately to the noise level of the
Microsoft Kinect at 5 m range.

The first three-dimensional environment is depicted in
Fig. 5. A group of ground and aerial robots was requested to
acquire information about a damaged column threatening to
collapse in a building. The region of interest was specified in
Fig. 5 by a bounding box around the column (highlighted),

TABLE II
AVERAGE NORMALIZED PIXEL DENSITY ERROR FOR THE DAMAGED

BUILDING EXPERIMENT WITH AN INITIALLY UNKNOWN AND AN

INITIALLY PRE-LOADED ENVIRONMENT.

Algorithm Unknown
Avg. (Std. dev.) NPDE

Pre-Loaded
Avg. (Std. dev.) NPDE

CC 0.175 (0.0423) 0.206 (0.0246)
Glob — 0.564 (0.0835)

(a) (b)

(c) (d)

Fig. 6. Final solution of the damaged building experiments: (a) and (b) the
optimisation data where the green, yellow, and red cubes are the voxels in the
virtual sensor field of view observed by the real sensors S with, respectively,
at least the required density d, a lower density than required, and no visibility
from any sensor; (c) 3D simulator view of the final configuration; and (d)
occupied voxels inside the column (occluded by the perfectly covered voxels
of (a)).

with the density d(sv,p) set to 0.5 Mpx/m2 for every surface
inside the bounding box. For comparison purposes, a global
CMA-ES algorithm configuring the maximum number of
sensors was run, along with the cooptimization controller.
Two types of experiments were run. The first type, called
Unknown, started with a completely unknown environment
which was modelled online during the experiments. The
second type, called Pre-loaded, began with a known envi-
ronment which was loaded from one of the previous runs.

Tab. II presents the results of five repetitions with the
initially unknown environment and 25 repetitions with the
preloaded environment in the damaged building. The differ-
ence between the initially unknown and pre-loaded environ-
ment is not significant as per a Wilcoxon rank-sum test. We
also verify that CC outperforms the Glob algorithm. Fig. 6(a)
and Fig. 6(b) present the controller data at the end of one
simulation. We observe that most of the voxels in the region
of interest are marked as perfectly covered, but that the errors
in Tab. II are higher than 0. Fig. 6(d) reveals the source of this



(a) Initial configuration (b) Final solution

Fig. 7. Three-dimensional museum environment.

TABLE III
AVERAGE NORMALIZED PIXEL DENSITY ERROR FOR THE MUSEUM

EXPERIMENT WITH AN INITIALLY UNKNOWN AND AN INITIALLY

LOADED ENVIRONMENT.

Algorithm Unknown
Avg. (Std. dev.) NPDE

Pre-Loaded
Avg. (Std. dev.) NPDE

CC 0.0102 (0.0046) 0.0077 (0.0022)
Glob — 0.169 (0.0897)

error. Noise in the acquisition sensors, namely the Kinects,
creates occupied voxels occluded by another layer of occu-
pied voxels in the occupancy grid. These occluded voxels
create a constant error in the evaluation function since they
cannot be observed by any sensor. This phenomenon prevents
the cost function from decreasing any further. However, the
sensor placement is still close to optimal as shown by the
large number of exterior voxels marked as perfectly covered.

The second set of simulations, with the same eight robots,
took place in the museum environment depicted in Fig. 7(a).
A user wanted to observe a given painting with a higher
resolution than what the sensors on the robots could actually
achieve. Thus, several robots had to combine their sensing
capabilities to achieve this task. The region of interest was
communicated to the robots through the simulation of a
virtual camera sensor sv with parameters f = 1000 px,
u = v = 1 px, Θ = 35◦, and Φ = 30◦ and positioned in front
of the painting. Thus, the required pixel density d(sv,p) was
not uniform in the entire region of interest, but is rather given
by (2) with si = sv.

Tab. III presents the results of five repetitions with the
initially unknown environment and 25 repetitions with the
preloaded environment in the museum. Again the difference
between the initially unknown and preloaded environment
experiments is not significant according to a Wilcoxon rank-
sum test. The average final NPDE shows that CC finds
a solution very close to the optimal one in this scenario
while Glob could not. A final configuration is presented in
Fig. 7(b). An interesting fact is that even if CC was allotted
four ground robots and four aerial robots, it used only the
four aerial robots in the final configuration in 28 of the 30
experiments. In fact, it was impossible for the wheeled robots
to achieve the correct pixel density due to the limited height
of their sensors. This shows that the presented cooptimization
controller was able to select the most appropriate type of
sensors from an heterogeneous set to execute a given sensing
mission successfully.

(a) Final configuration

(b) Optimisation data (using the
same legend as in Fig. 6)

Fig. 8. Room used for the real world experiments.

VII. REAL WORLD EXPERIMENTS

This section presents real world experiments conducted in-
doors, as presented in Fig. 8(a). For these experiments, a 2D
map of the environment was build beforehand with a simul-
taneous localization and mapping technique [19] since the
robots operated on a floor. During the experiments, the robots
were localized using adaptive Monte Carlo localization [20],
and their trajectories were planned by a dynamic window
approach algorithm [18]. Each robot was broadcasting its
position to prevent any collision during displacements. Four
wheeled robots, similar to those used in simulations, were
synchronized through a ROS Multimaster setup. The robots
were Create mobile platforms equipped with a Microsoft
Kinect, a Hokuyo URG-04LX-UG1 lidar, and a gyroscope.
The robots were linked through the building Wi-Fi network
and operated by an Asus Eee-PC. The optimization and 3D
model ran on an Intel Core i7 920 desktop with 8GB RAM.

The mobile sensors had to generate a view of the red
car door, as if taken just above the central cardboard box.
The parameters for the virtual camera sensor sv were f =
6666 px, u = v = 1 px with a field of view of Θ = 60◦

and Φ = 45◦. This setup covered the complete interior part
of the door. The real sensor parameters were f = 531 px,
u = v = 1 px with a field of view of Θ = 62◦ and Φ = 48◦.
The robots had to position themselves close to the target to
obtain the required pixel density.

Five independent runs were conducted with very similar
results. The average time of an experiment was 10 minutes,
where 90% of the time was spent on displacing the robots
and the other 10% was used by the optimization process.
The optimization process was run for 50 iterations and the
best positions found were sent to the robots. Once the robots
arrived at their position, the optimization was continued. This
alternating process was run until no further displacements
were needed.

Fig. 8(b) shows the controller data at the end of one repre-



Fig. 9. Images captured with the robot’s camera at the end of an experiment.

sentative run out of the five. We observe that most of the door
is covered with the correct pixel density. Moreover, Fig. 9
shows the images captured from the robots’ camera at the end
of the experiment. We notice that the entire area of the door
is covered by the combined photographs. Furthermore, the
robot taking the top right image is placed such that the robot
in front of it does not occlude its vision of the top right part
of the door. We also notice how the robots managed to move
as close as possible to the target so that their pixel density is
maximized while still achieving good visual coverage. To the
best of our knowledge, the presented controller is the first to
achieve sensor placement considering this level of accuracy
in initially unknown, nonconvex, three-dimensional environ-
ments. A video showing the complete process of the sensor
placement experiment is available at http://vision.gel.
ulaval.ca/˜fmdrainville/msensor_opt.mp4

VIII. CONCLUSION

In this paper, we proposed a framework for mobile robotic
sensor placement in arbitrary three-dimensional environ-
ments. As a first original contribution, we proposed a model
to estimate pixel density obtained by a sensor network on
3D environments with an arbitrary geometry. The second
main contribution of the paper is a divide-and-conquer
derivative-free global optimization method for determining
the placement of sensors in the environment, resulting from
an original combination of cooperative coevolution with
CMA-ES. By joining these together, we are able to optimize
in real time the placement of a variable number of (possibly
heterogeneous) sensors to maximize pixel density in the area
of interest.

The proposed framework has been compared favourably
to a state-of-the-art method limited to the control of robotic
cameras observing a two-dimensional target. Furthermore,
simulations have shown that satisfactory placement can also
be obtained in different three-dimensional scenarios for mul-
tiple sensing tasks. The simulation also demonstrated that the
presented controller can cope efficiently with the placement
of heterogeneous sensors. Finally, we have implemented the
framework on real robots and have shown the capabilities of
the whole system experimentally.

This work can be extended in several ways. First, the
pixel density in overlapping sensed regions could be com-

puted by merging the information from different sensors
instead of completely removing the information of the less
precise sensors. Second, a degradation of the cost function
performance when sensed regions overlap could be added
to help the controller to minimize the number of sensors.
Finally, the optimization process could include a measure of
displacement length to be minimized during the optimization
to reduce the amount of energy required to move the robots
in the environment.
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