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Abstract—Dealing with real-life databases often implies
handling sets of heterogeneous variables. We are proposing
in this paper a methodology for exploring and analyzing
such databases, with an application in the specific domain
of healthcare data analytics. We are thus proposing a two-
step heterogeneous finite mixture model, with a first step
involving a joint mixture of Gaussian and multinomial
distribution to handle numerical (i.e., real and integer
numbers) and categorical variables (i.e., discrete values),
and a second step featuring a mixture of hidden Markov
models to handle sequences of categorical values (e.g.,
series of events). This approach is evaluated on a real-
world application, the clustering of administrative health-
care databases from Québec, with results illustrating the
good performances of the proposed method.

I. INTRODUCTION

Healthcare systems are characterized by an increas-
ing number of medical disciplines and specialized de-
partments. Such modern organizations include infor-
mation systems keeping information on patients and
services provided in various administrative databases.
Extracting useful knowledge from these large heteroge-
neous healthcare databases is usually hard to achieve
with traditional methods (e.g., SQL queries). This limi-
tation comes both from the complex nature and the size
of these databases. For instance, on average between
80 and 86 million medical services were provided each
year to the population of Québec [8]. Moreover, the
various databases are made of observational information
of various purposes (e.g., insurance, patient records),
which are not designed nor adapted to the application
of conventional analytics methods.

In the current work, we are considering the use
of clustering methods producing probabilistic models
describing the data. The model-based approach assumes
data generated by a finite mixture with some probability
distributions. More specifically, in order to deal with
administrative databases, we are proposing an algorithm
for clustering with a heterogeneous finite mixture model
of complex entities characterized by numerical, categor-
ical, and multivalued categorical variables.

The paper is organized as follows. An overview
of relevant clustering approaches is first presented in

Sec. II. We then present our methodology and the
corresponding algorithm in Sec. III. Follows in Sec. IV
the evaluation of the method for the clustering of
administrative healthcare databases from Québec, before
concluding the paper in Sec. V.

II. RELATED WORK

Model-based clustering (or mixture model) is one of
the two main families of approaches used for clustering
– the other being distance-based methods. Models are
usually based on the use of mixture probability den-
sities. The choice of the probability densities depends
on the types of variables at hand. Gaussian mixture
models are widely used to handle quantitative variables
whereas a mixture of multinomial distributions are more
suited for categorical variables, assuming independence
between these variables (see Clogg [1]). Furthermore,
mixture models can also be applied to process discrete
sequences. For example, Tino et al. [13] have used a
constrained mixture of discrete hidden Markov models
for the clustering of Web logs data. For general reviews
of finite mixture models, see McLachlan and Peel [7].

In practice, data sets can contain many types of
variables. Jorgensen and Hunt [5], [6] proposed a mix-
ture model to handle data having both continuous and
categorical variables. In this model, they assumed that
variables are pairwise independent. The component of
each variable depends on its type, while the distribution
in the cluster for each individual is the product of the
distributions of each variable. Moreover, this approach
is not applicable for datasets composed of multivari-
ate and sequential data. In contrast, Smyth [12] has
demonstrated that it is possible to make a finite mixture
model that handles both multivariate and sequential vari-
ables, assuming independence between these different
types of variables. This model extends Jorgensen and
Hunt’s model by adding the finite mixtures of sequential
models. In the application of his model, Smyth used
finite mixtures of two-dimension Gaussian components
coupled to first order Markov chains.

Over the last decade, model-based clustering has
also been applied to healthcare. Garg et al. [3] developed
a mixed distribution survival tree to cluster patients



according to the length of their hospital stay. Their
model-based clustering is a finite mixture of Gaussian
components to model the length of a hospital stay in
each node making a decision tree over the categorical
data. In opposition to our proposal, their model was
not built in a purely unsupervised way nor aimed
at modeling arbitrary mix of heterogeneous variables.
Rebuge and Ferreira [10] applied a finite mixture of
first order Markov chains to cluster the logs event
sequences of clinical and administrative care flows for
the Hospital of São Sebastião. These models have been
applied for one type of variables. To our knowledge, the
approach proposed in this paper is the first application
to healthcare of probabilistic clustering able to handle
three important types of variables.

III. PROPOSED TWO-STEP HETEROGENEOUS
MIXTURE MODEL

Relational databases are organized into many tables
whose variables are interconnected by links. By query-
ing the relational databases, we can build a set of n
heterogeneous objects X = {x1, . . . ,xn} characterized
by the various linked variables V1, . . . , Vm. Each object
xi is a vector (xi,1, . . . , xi,r, . . . , xi,q, . . . , xi,m), where
the first r elements are numeric values (domain is over
numbers), the next (q− r) elements are categorical val-
ues (domain is finite and unordered), and the remaining
ones are multivalued categorical values (concatenation
of some categorical values). For instance, one value of
the diagnosis variable of one hospital stay is a series of
diagnostic (e.g., {O48001,Z370,O62101}). Our method
aims at clustering objects composed of a mix of these
three types of values based on mixture model clustering.
By proceeding this way, we aim at working on the
original representation of objects.

The proposed two-step finite mixture model algo-
rithm has been designed to work on such a represen-
tation. Our work extends the proposal of Smyth [12]
in two ways. First, we introduced the use multinomial
distributions and hidden Markov models (HMM) to
handle categorical and multivalued categorical values,
respectively. Second, the algorithm is organized as iter-
ations over two steps. During the first step, we determine
the model for numerical and categorical variables of
the data. Depending on the clustering results obtained,
the second step determines a HMM for each multival-
ued categorical values in each cluster. In the end, the
individual observation membership is calculated as the
product of memberships generated in those two steps. At
each step, we determine a model fitting data of specific
variable types.

A. Step 1: EM for Numerical and Categorical Variables

Considering the formalization given above, the pur-
pose of the first step is to cluster in K groups the
objects xi ∈ X , considering only numerical and cat-
egorical variables, modeling them as a finite mixture

model. The proportion for the groups (priors) are given
by {ω1, . . . , ωK}, each group following a probability
distribution f(xi|φk), with a distinct parametrization φk
for each group k = 1, . . . ,K. We thus assume that each
observation xi is generated by a finite mixture model
with probability given by f(xi) =

∑K
k=1 ωkf(xi|φk).

We assume that the variables are independent such
that the distribution probability f(·|φk) of group k
is the product of distribution probability f(·|ϕk,l) for
all numerical and categorical variables and is given
by f(xi|φk) =

∏q
l=1 f(xi,l|ϕk,l). For numerical vari-

ables, f(xi,l|ϕk,l) is modeled as a Gaussian distribution,
f(xi,l|ϕk,l) ∼ N (µk,l, σ

2
k,l), where µk,l and σk,l are

respectively the mean and standard deviation of the
l-th variable in cluster k. For categorical variables,
we are using a multinomial density, f(xi,l|ϕk,l) ∼
Mutl(1,λk,l), where λk,l,e is the probability that the
l-th variable takes modality e when the individual i
belongs to cluster k. In such a setting, xi,l,e takes 1 if
individual i has modality e for the l-th variable, taking 0
otherwise. Ll is the number of modalities for variable Vl
and

∑Ll

e=1 λk,l,e = 1. This modeling is the first novelty
of our proposal.

Determining the parameters of a finite mixture
model is usually done by using the Expectation Maxi-
mization (EM) algorithm [2]. The principle of the algo-
rithm is to iteratively evaluate the membership expec-
tations z(t)i,k of each instance for each group according
to the model parameters φ(t−1) (E-step), followed by
re-evaluating the model parameters φ(t) by maximizing
the log-likelihood expectation (M-step). The algorithm
starts from some initial estimate of parameter φ(0)

and then proceeds by iteratively evaluating membership
expectations z(t)i,k and updating φ(t) until convergence is
achieved. At the E-step, each individual membership
probability belongs to cluster k with respect to the
current model parameter φ(t−1), that is:

z
(t)
i,k =

ω
(t−1)
k f(xi|φ(t−1)k )∑K

j=1 ω
(t−1)
j f(xi|φ(t−1)j )

. (1)

At the M-step, parameters that maximize the log-
likelihood L(φ) are calculated, usually analytically (i.e.,
by evaluating ∂L(φk)/∂φk,l = 0 for all φk,l mak-
ing φk). For the mixed Gaussian-multinomial model
proposed, the expression of parameters that maximize
expectation of the complete log-likelihood is:

µ
(t)
k,l =

∑n
i=1 z

(t)
i,k xi,l∑n

i=1 z
(t)
i,k

, (2)

(σ
(t)
k,l)

2
=

∑n
i=1 z

(t)
i,k(xi,l − µ

(t)
k,l)

2∑n
i=1 z

(t)
i,k

, (3)

λ
(t)
k,l,e =

∑n
i=1 z

(t)
i,k xi,l,e∑n

i=1 z
(t)
i,k

. (4)



The first step of the method requires choosing initial
parameters for the Gaussian and multinomial distribu-
tions. For that purpose, we apply several times the k-
prototypes method for mixed numeric and categorical
values proposed by Huang [4], choosing the partition
which minimizes the total error. Then, we compute
means and standard deviation for each variable in each
cluster and we assign those values to the initial µ(0)

k,l and
σ
(0)
k,l of the Gaussian distributions. Similarly, we com-

pute frequencies of each modality for each categorical
attribute and assign it to the corresponding λ(0)k,l,e.

After parameter initialization, the clustering process
over numerical and categorical variables is launched.
This clustering process is based on algorithm EM
described above. The expression of parameters in the
maximization step is given by Eq. 2-4.

As a result of this first step, in which we deal only
with numerical and categorical variables, we obtain in-
dividual memberships computed by Eq. 1. Furthermore,
we can compute crisp partition by assigning each object
i to the cluster that maximizes zi,k:

bi,k =

{
1 if k = argmaxj zi,j
0 otherwise . (5)

The values of the multivalued categorical variable for
this partition is used as input for the second step.

B. Step 2: HMM for Multivalued Categorical Variables

The second novelty of our method is the use of
HMM [9] to handle multivalued categorical variables
values. The purpose of the second step of the algorithm
is to fit a HMM for each multivalued variable values
in each cluster obtained from the first step, using the
crisp partitions of the data instances given by Eq. 5.
For simplification purpose, we provide details in the
following for the l-th multivalued variable.

Obtaining as input the crisp partition of objects given
by the first step, we have a set of individual variable
values in each cluster k. Each individual variable value
xi,l is given by xi,l = {xi,l,1, xi,l,2, . . . , xi,l,ζi}, and
is a sequence of observed symbols xi,l,e that can
take Ol possibles values in an observation space. For
example, diagnosis multivalued variable can take as
individual value {O48001,Z370,O62101}. So, its ob-
servations space is the set of diagnosis codes. From
this, we train K HMMs for each multivalued variable
Vl, one for each cluster, by the well-known Baum-
Welch algorithm, in order to obtain a model parameter
ϕk,l = {πk,l,Ak,l,Bk,l} where πk,l is the initial
probability vector, Ak,l is the transition probability
matrix, and Bk,l is the emission probability matrix.
Since the convergence of this algorithm depends on its
initialization, we run it many times where parameters
ϕk,l are initialized to values coming from a Dirichlet
distribution, varying the α parameter (same for all
dimensions) of the distribution between 0.1 and 1 by

0.1 steps. For each cluster, we select the best HMM ob-
tained with this method according to the log-likelihood.

The next phase in the second step is to compute
variable value xi,l the emission probability P (xi,l|ϕk,l)
for each individual given a HMM of parameters ϕk,l.
This probability is computed by the so-called forward
algorithm. To provide a value that is comparable with
the membership values computed in the first step, we
normalize this probability by the sum of probabilities
of all clusters, as in:

ξi,k,l =
P (xi,l|ϕk,l)∑K
k=1 P (xi,l|ϕk,l)

. (6)

So, we obtain individual memberships for each cluster
given a variable of the object value.

C. Two-step EM+HMM Algorithm

One iteration of the two-step algorithm proposed
terminates by computing individual membership prob-
abilities as the product of the individual membership
probability obtained in the first step using the EM
algorithm with the individual membership probabilities
obtained from the HMMs of each multivalued variable:

hi,k = zi,k

m∏
l=q+1

ξi,k,l. (7)

For the next iteration, the crisp partition obtained with
this membership hi,k is used to compute initial param-
eters of the Gaussian and multinomial distribution in
order to make a new iteration of the proposed two-step
algorithm. We set a fixed number of iterations as the
stop criterion for the algorithm. The general algorithm
of the method is presented as Algo. 1, while the specific
version of EM used for the numerical and categorical
variables is presented as Algo. 2.

D. Interpreting Multivalued Results

After choosing the best allocation, we need to in-
terpret the results obtained for the multivalued vari-
ables. Let Vl be the l-th multivalued variable and
oj,l be one categorical value in the space of Vl. We
define the support for each state oj,l in each cluster as
supportk(oj,l) =

∑n
i=1 bi,k Ji,l(oj,l)

|Ck| where Ji,l(oj,l) =
1 if oj,l ∈ xi,l and 0 otherwise, for l = q + 1, . . . ,m
and j = 1, . . . , Ol and |Ck| is the cardinality of the k-th
cluster. So the support for one observation in a cluster
is the ratio of the number of the multivalued variable
values that contains this observation by the number
of objects in the cluster. We analyze the distribution
of state supports in the clusters for each multivalued
variable to interpret their variability.



Algorithm 1 Two-step EM+HMM algorithm for com-
plex objects
input X = {x1, . . . ,xn}: set of objects to cluster; T :

maximum number of iterations
output b(T )

i,k : final labels of objects
1: Compute b(0)i,k for i = 1, . . . , n and k = 1, . . . ,K

with k-prototypes, by making a clustering partition
of objects in X using only numerical and categori-
cal variables

2: for t = 1, . . . , T do
3: Compute labels b(t)i,k and membership z(t)i,k for i =

1, . . . , n and k = 1, . . . ,K applying EM over
numerical and categorical variables as described
in Sec. III-A, using Algo. 2

4: Generate HMM models, ϕ(t)
k,l for k = 1, . . . ,K

and l = q + 1, . . . ,m, using Baum-Welch as
described in Sec. III-B

5: Compute emission probabilities P (xi,l|ϕ(t)
k,l) us-

ing the forward algorithm and membership in-
dividual probability ξ

(t)
i,k,l using Eq. 6, for k =

1, . . . ,K and l = q + 1, . . . ,m
6: Compute two-step membership individual prob-

abilities h(t)i,k with Eq. 7 for i = 1, . . . , n and
k = 1, . . . ,K

7: Compute labels b(t)i,k for i = 1, . . . , n and k =
1, . . . ,K as:

b
(t)
i,k =

{
1 if k = argmaxj h

(t)
i,j

0 otherwise

8: end for

IV. CASE STUDY: HEART FAILURE OF ELDERLY
PEOPLE IN QUÉBEC

In this section, an evaluation of the proposed
methodology presented in Sec. III was carried out on
the clustering of medical records of patients over 65
years old with diagnosed heart failure diseases and
who live in the province of Québec (Canada). We
have thus been granted access to administrative health
care databases of the RAMQ (Régie de l’assurance-
maladie du Québec), which acts as the health insurer
for Québec residents covered by the universal public
health insurance program (virtually 100 % of the people
living in the province), and from the MSSS (Ministère
de la Santé et des Services sociaux du Québec), which
contains a table of hospital stays and other related
tables. These databases record all medical acts from
health care professionals that are covered by the RAMQ
and all hospital stays in Québec. Our aim is to extract
information from these data that allow us to reconstruct
how patient medical services are given to elderly people
suffering from this disease, to cluster this service into
homogeneous groups, and, as a first step, to interpret
the results with specialists of the domain.

Algorithm 2 EM for numerical and categorical vari-
ables
input X = {x1, . . . ,xn}: set of objects to cluster

described only by numerical and categorical vari-
ables; b(0)i,k : initial labels of objects; TEM: maximum
number of iterations

output bi,k: final object labels; z(T
EM)

i,k : final member-
ship probabilities

1: Compute µ
(0)
k,l ←

∑n
i=1 b

(0)
i,k xi,l

nk
for k = 1, . . . ,K

and l = 1, . . . , r

2: Compute σ
(0)
k,l ←

∑n
i=1 b

(0)
i,k (xi,l−µ(0)

k,l)
2

nk
for k =

1, . . . ,K and l = 1, . . . , r

3: Compute λ(0)k,l,e ←
∑n

i=1 b
(0)
i,k xi,j,e

nk
for k = 1, . . . ,K,

l = r + 1, . . . , q, and e = 1, . . . , Ll
4: t← 1
5: while

(
|L(φ(t))−L(φ(t−1))|

L(φ(t−1))
≥ ε
)
∧ (t ≤ TEM) do

6: E-step: compute z(t)i,k using Eq. 1 for i = 1, . . . , n
and k = 1, . . . ,K

7: M-step: compute µ(t)
k,l and σ(t)

k,l for k = 1, . . . ,K
and l = 1, . . . , r using respectively Eq. 2 and 3,
and λ

(t)
k,l,e for k = 1, . . . ,K, l = r + 1, . . . , q,

and e = 1, . . . , Ll using Eq. 4
8: t← t+ 1
9: end while

10: Compute labels bi,k from z
(TEM)
i,k using Eq. 5 for

i = 1, . . . , n and k = 1, . . . ,K

A. Data Preprocessing

We have preprocessed these databases by gathering
the various medical services to obtain hospital stays
category. Hospital stays are defined as a service given in
the context of a hospitalization of at least one night. We
use the databases described above to integrate informa-
tion of patient services. We have two types of databases,
the first one contains information of all hospital stays
and the second one contains physician compensations
for medical services provided and drugs purchased in
non-hospital settings. For our experiments, we selected
individuals in these databases with at least one diagnosis
of heart failure (i.e., ICD-10 diagnosis codes 428.0,
428.1, or 428.9) made between 1 January 2000 and
31 December 2005. We also rejected individuals that
were not 65 years or older at the earliest consultation
date or earliest departure date from hospital stays.
By applying these criteria, we have extracted 684,906
hospital stays which took place between 1 January 2000
and 31 December 2009. We then associated the patient
information joined to the diagnostics and interventions
information. Each hospital stay of a patient is considered
as a category of complex objects described by a set
of numerical and categorical variables corresponding
to the patient and care information, and multivalued
categorical variables corresponding to the diagnostic
and intervention values.
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Fig. 1. BIC value according to the number of clusters.
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(b) Psychiatry service
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(d) Prostatic hyperplasia diagnosis

Fig. 2. Comparison of results obtained with the Expectation Maximization
method applied only on numerical and categorical variables (EM) with the
proposed method handling also multivariate categorical values (EM+HMM).

B. Preliminary Experiments

For the experiments presented in this paper, we run
our two-step method for T = 3 iterations globally
(see Algo. 1), TEM = 100 iterations for EM at the
first step (see Algo. 2), and we train HMMs having
10 hidden states. Four repetitions are conducted, where
the best value according to Schwarz’s Bayesian infer-
ence criterion (BIC) [11] is kept. The GHMM library
(http://ghmm.org) was used as implementation of the
HMM algorithms.

In order to determine the number of clusters to use,
we executed the clustering of hospital stays entities
with a varying number of clusters k ∈ {10, 11, . . . , 28},
evaluating clustering results with the BIC, as illustrated
in Fig. 1 Results obtained suggest the use of 22 clusters,
where the BIC value is minimum.

According to this choice, we compare the final
clustering given by our two-step EM+HMM algorithm
with the clustering given by EM algorithm in the
first cycle of our algorithm. These results showed that
the proposed approach allows the generation of more
homogeneous clusters and other specialized clusters,
justifying the addition of multivalued variables and the
effectiveness of our algorithm at discovering trends in
clusters. The analysis of the distribution of medical
services, specialists and diagnosis within clusters pre-

sented in Fig. 2 confirms that the proposed EM+HMM
algorithm improves EM results for several groups, but
also allows other more homogeneous groups to be
identified, which EM cannot detect as it uses only
numerical and categorical variables.

C. Results and Analysis

In the following, results are presented through a
description of the families of hospital stay clusters
obtained and a description of variability of multivalued
categorical variables (diagnoses variables and interven-
tion variables). It is interesting to note that, although
patients with heart failure have concurrent illnesses and
healthcare services are often provided by specialists and
non-specialists, our method has allowed us to discover
several large families of hospital stays. This illustrates
that huge amount of hospital stays can be clustered
into several categories. Clusters included hospital stays
related to: i) cataracts disease (cluster 9); ii) heart prob-
lems (clusters 3, 6, 10, 11, and 20); iii) disease of the
musculoskeletal system (clusters 4 and 5); iv) physical
ailments, mental, functional and social related to ageing
(cluster 8); v) kidney and prostate disease, urinary tract
(cluster 2); vi) respiratory tract (cluster 19); vii) mental
disorder (cluster 12); viii) infections (cluster 13).

In addition, it is possible to make a description of
cluster centers obtained with our method. For instance,
the center of cluster 9 is characterized by 1) ophthal-
mology as a most frequent service and speciality, 2)
cataract as the most frequent diagnosis, and 3) insertion
of an intraocular prosthesis + cataracts extraction as the
most frequent intervention.

On the other hand, the distributions of some diagnos-
tics in clusters demonstrate the difficulty of extracting
a homogeneous and dissociated cluster. This seems to
be logical according to the comorbidity of heart insuf-
ficiency with other diseases and the conditions used for
extracting the relevant instances from the databases (i.e.,
diagnosis of heart failure diseases), as highlighted in
Fig. 3(a)-3(b). Despite this comorbidity, in each detected
cluster we have some specific diseases that differentiate
it from others, as illustrated by Fig. 3(c)-3(d).

As noticed in Fig. 3(e)-3(f), the analysis of inter-
vention distributions in clusters strengthens clustering
results and comes in line with the distribution of the di-
agnostic obtained. In Fig. 3(g)-3(h), we can see also that
each hospital stay is characterized by medical services
which signifies that the analysis of the distribution of
services within clusters can denote the capacity of our
method to cluster hospitalizations with homogeneous
services. Similar conclusions were supported by the
variability of practitioner speciality within clusters, as
illustrated in Fig. 3(i)-3(j). These results demonstrate
that the proposed two-level heterogeneous finite mixture
model clustering is capable of extracting hospital stay
cluster regardless of the complexity of variables and
comorbidity on diagnoses.

http://ghmm.org


1 3 5 7 9 11 13 15 17 19 21
Cluster

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Su

pp
or

t

(a) Atrial fibrillation and flutter di-
agnosis

1 3 5 7 9 11 13 15 17 19 21
Cluster

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Su
pp

or
t

(b) Essential hypertension diagnosis

1 3 5 7 9 11 13 15 17 19 21
Cluster

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Su
pp

or
t

(c) Cataract diagnosis

1 3 5 7 9 11 13 15 17 19 21
Cluster

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Su
pp

or
t

(d) Transtrochanteric fracture of
femoral neck, simple diagnosis
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sification without intraocular lens
insertion intervention

1 3 5 7 9 11 13 15 17 19 21
Cluster

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Su
pp

or
t

(f) Transurethral prostatectomy in-
tervention
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(h) Urology service
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Fig. 3. Support values illustrating the variability according to the
different hospital stay clusters.

V. CONCLUSION

In this paper, we are proposing a two-step heteroge-
neous finite mixture model clustering algorithm based
on mixture and hidden Markov models. Our algorithm
handles objects characterized by numerical, categorical,
and multivalued categorical variables. We apply it on
administrative health care databases from the province
of Québec, to cluster hospital stay services. Results with
those real-life databases showed that our method can

identify large families of health services. In addition,
our approach is not limited to exploring health care
databases, it can be applied to other types of complex
entities. We plan to further extend our work by con-
structing patient pathways according to service labels
obtained by clustering and analyzing those pathways
with process mining methods.
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