
Combinatorial Optimization EDA using Hidden Markov
Models

Marc-André Gardner, Christian Gagné, and Marc Parizeau
Laboratoire de vision et systèmes numériques

Département de génie électrique et de génie informatique
Université Laval, Québec (Québec), Canada G1V 0A6

marc-andre.gardner.1@ulaval.ca, {christian.gagne, marc.parizeau}@gel.ulaval.ca

ABSTRACT
Estimation of Distribution Algorithms (EDAs) have been
successfully applied to a wide variety of problems. The
algorithmic model of EDA is generic and can virtually be
used with any distribution model, ranging from the mere
Bernoulli distribution to the sophisticated Bayesian network.
The Hidden Markov Model (HMM) is a well-known graphi-
cal model useful for modelling populations of variable-length
sequences of discrete values. Surprisingly, HMMs have not
yet been used as distribution estimators for an EDA, al-
though they are a very powerful tool for estimating sequen-
tial samples. This paper thus proposes a new method, called
HMM-EDA, implementing this idea, along with some pre-
liminary experimental results.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.3 [Probability
and Statistics]: Markov processes

Keywords
Estimation of distribution algorithms; Hidden Markov mod-
els; Combinatorial optimization

1. INTRODUCTION
Combinatorial optimization problems are of high interest

in the evolutionary computing community. Besides their
various real-world applications, they are often very hard to
solve in an efficient manner: most of these problems are NP-
complete, and the interactions between their variables make
their modelling difficult.

An Estimation of Distribution Algorithm (EDA) is an op-
timization method where the search of an optimum is led by
an explicit probabilistic model [5]. This probabilistic model
may be of various kinds, depending on the targeted prob-
lem. In the specific case of combinatorial optimization, and
especially permutation problems, some EDAs have already
been proposed. Among them, we may mention the ICE
[3] method, which makes use of a standard GA where the
crossover points are selected through the underlying EDA,
EHBSA (Edge Histogram Based Sampling Algorithm) [8],
which stores information on the permutations in an Edge
Histogram Matrix, and the dependency-tree EDA (dtEDA)

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

[7]. A dependency tree is similar in some ways to a Bayesian
network as it is able to find and learn the dependencies be-
tween the vector components. However, Hidden Markov
Models (HMMs) have never been applied in an EDA per-
spective, even if their underlying sequence nature makes
them very suitable for the modelling of combinatorial op-
timization problems. In this paper, we are proposing a
method called HMM-EDA, which is a proof-of-concept of
the applicability of HMMs for modelling EDAs.

2. HIDDEN MARKOV MODELS
Before going into design and implementation details of

HMM-EDA, a brief review of some important notions on
Markov models is presented below.

2.1 Markov Process
A Markov process is a stochastic process with a condi-

tional probability distribution that satisfies the Markov prop-
erty. This property specifies that all the information needed
to obtain the probability distribution of the next state can
be retrieved in the current state, that is to say that the other
past states have no influence at all on the distribution. In a
discrete distribution context, this property is often formal-
ized as:

P (Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ...)

= P (Xt = xt|Xt−1 = xt−1)
(1)

A Markov process is thus frequently said to have no mem-
ory, since transitions between its states depends only on the
current state of the process. This property drastically re-
duces the model complexity, and thus the requirements in
terms of computational effort and memory used.

2.2 Markov Chain
A Markov chain is a simple yet interesting example of a

Markov process. It is characterized by a set of n discrete
states, and by a n× n transition matrix. This matrix spec-
ifies the transition probabilities from one state to another:
the value at position (i, j) in the matrix is the probability
to transition to state j when the current state is i. By defi-
nition, lines of the transition matrix sum to 1. The diagonal
values of the matrix provide the self-transition probabilities,
that is the probability that the process stays in the same
state at t+ 1.

While very interesting in various ways, the Markov chains
are restricted to the modelling of phenomena which also re-
spect the Markov property. This assumption is rarely met



x1 x2

y1 y2 y3

a1,1

a1,2

a2,1

a2,2

b1,1
b1,2

b1,3
b2,1

b2,2 b2,3

Figure 1: Depiction of a HMM with two hidden
states (xi), the associated transition probabilities
(ai,j), three possible observations (yi), and their cor-
responding emission probabilities (bi,j).

in real-world problems, or even in some classical learning
problems. For instance, in the Travelling Salesman Problem
(TSP), the choice of the next city to visit is not dependent
only on the previously visited one, but on all the cities visited
so far. This limitation makes the Markov chains unsuitable
for many applications.

2.3 Hidden Markov Models
A hidden Markov model (HMM) can be seen as a Markov

chain for which the current state cannot be directly observed
(e.g. it is hidden). Instead, each of the states of the Markov
chain emits an observation from a previously defined set.
This emission process is also stochastic, that is a given state
only specifies a probability distribution over the observations
set. Accordingly, the same observation may be generated by
more than one state.

These hidden states still rely on the Markov property.
However, the global stochastic process is no longer limited to
the modelling of sequences following the Markov property,
since the hidden states provide the memory needed to learn
more complex, arbitrary sequences.

An HMM has thus N hidden states and M observations,
respectively {x1, x2, . . . , xN} and {y1, y2, . . . , yM}. It is fully
described by parameters set θ = {π,A,B}, where:

• π is an initial probability vector of size N , that gives
the probability πi of starting the HMM in a state xi;

• A is a transition probability matrix of size N × N ,
that gives the probability ai,j of moving into state xj at
the next time step when the current state is xi;

• B is an emission probability matrix of size N ×M ,
that gives the probability bi,j of making the observation
yj when the state is xi.

Fig. 1 illustrates an HMM of two states and three possi-
ble observations, along with their transition and emission
probabilities. Notice how each observation (y) has no direct
dependency on other ones.

A generic learning process for those parameters has been
proposed through the Baum-Welch algorithm. This algo-
rithm is an instance of the general Expectation Maximiza-
tion procedure (EM), and takes a set of sequences of ob-
servations. It works by increasing the generation probabil-
ity of these sequences through the HMM, and it has been

demonstrated that the value of this generation probability
will be at least equal to the value before the application of
Baum-Welch [1, 6]. However, as every EM variant, it is quite
sensitive to its initial parameter values.

3. ESTIMATION OF DISTRIBUTION
ALGORITHMS

A general model of Estimation of Distribution Algorithms
(EDAs) [5] consists in iteratively generating samples (solu-
tions) from the current estimated distribution, evaluating
these samples according to a problem-specific fitness func-
tion, and then updating the estimation of the distribution
from the best samples generated. Different EDAs are mainly
characterized by the type of distribution model they use,
and the distribution model should itself be carefully chosen
according to the type of problem that needs to be solved.

3.1 Proposed method
The proposed approach integrates an HMM in the generic

EDA model, using it to directly estimate the distribution of
the samples making up the population. Using an HMM
for that purpose is quite versatile, as it only assumes that
the samples are sequences of discrete values. Such a model
should be useful in a wide variety of optimization problems,
including problems where solutions can be modelled as bit
strings. HMM should be able to capture complex interac-
tions between the elements of sequences, not only the first
order relations captured in observable Markov models.

The application to the EDA process is quite straightfor-
ward. Indeed, we can directly map each possible value to
an observation of the HMM. For example, in a features se-
lection problem, we would have as many observations as the
number of available features. As a result, the HMM train-
ing process can be directly fed with a given set of individuals
(for instance the top 10% of the population in terms of fit-
ness), and the individuals generation process boils down to
the sampling of the trained HMM.

The production of individuals of variable length is not a
problem for the HMM, since we can sample the model as
much as we want. In the same way, the generation of a fixed
length sequence is quite easy – we simply have to place a
hard length limit over the sampling process. However, in
the case of permutation problems, an issue arises, as each
value must be generated only once in an individual. For in-
stance, in the TSP, each town must be visited once and only
once. To avoid the generation of the same value twice in
an individual, we have to place some additional restrictions
over the HMM used. Those restrictions are implemented by
adding a binary mask over the emission probability matrix
B. Initially, all the values of this mask are set to 1, that
is, every emission may be selected. When an observation
is made, its corresponding probability is set to 0 for every
state, and the remaining observation probabilities are nor-
malized.

The method is based on a (µ + λ) selection loop, with
the addition of the model training and individual sampling
processes. The population is first initialized as in a GA, and
the fitness of each individual is computed. Then, while a
stopping criteria is not met (in this case, a maximum number
of iterations), the optimization proceeds with:

1. Tournament selection to select the most valuable in-
dividuals of the population. This selection operator



implies that a given individual might be selected sev-
eral times. This is intended, as those multiple copies
will bias the HMM toward learning more accurately
the best individuals of the pool.

2. HMM parameters (θ = {A,B,π}) initialization us-
ing normalized uniformly distributed values, to ensure
that related probabilities sum up to 1. Initial random-
ness is important to facilitate the convergence of the
Baum-Welch algorithm.

3. HMM training with the individuals selected at step 1,
using the Baum-Welch algorithm.

4. Offspring population generation, directly using the
HMM output as new samples. In the generation pro-
cess, some emissions can be randomized, as explained
below. Between each generation of a sample, the HMM
is reset, i.e. the sequence corresponding to a generated
individual does not depend on the previous samples.

5. (µ + λ) selection, checking to select at most one copy
of duplicated individuals in the new population.

The proposed method makes use of some mutation when
generating individuals with the HMM. It consists in modify-
ing the usual mechanism of observation emission, such that,
according to a given mutation probability, an observation
is selected randomly (uniformly) instead of using the HMM
emission probabilities of the current state. This operation
should allow exploration and diversity to be increased, by
producing some random elements in some of the sequences.
Preliminary experiments suggested that a mutation prob-
ability around 2% for each emission is in general a good
parametrization.

4. EXPERIMENTS
As preliminary experiments, the proposed approach has

been tested on two classical problems, that is the Travelling
Salesman Problem and a Features Selection problem, where
the algorithm has to choose a given number of features of a
classifier in order to maximize the classification rate.

For both problems, we compare the results of HMM-EDA
to a classical GP approach. In the case of the features selec-
tion problem, we also added a simple EDA, PBIL [2], which
works with fixed-size bit string samples and assumes a mul-
tivariate Bernoulli distribution of these samples. While very
simple, this EDA will characterize the level of performance
which could be achieved by an algorithm which does not
take interactions between variables into account.

All experiments were conducted with the DEAP (Dis-
tributed Evolutionary Algorithms in Python) framework1.
The implementation of the HMM for the HMM-EDA relies
on the GHMM library2.

4.1 Features Selection for Classification
For the experiment, we used the spambase dataset, avail-

able on the UCI machine learning repository3. It is a dataset
made of 4601 different instances, each of these being an email
categorized into two classes, spam or non-spam, with 57
available features. The features are mostly the frequency

1http://deap.gel.ulaval.ca
2http://ghmm.org
3https://archive.ics.uci.edu/ml/datasets/Spambase

of specific words in the email. Given that not all words are
useful to categorize an email as spam, it makes sense to ap-
ply a features selection methods to this dataset. For each
run, the set has been randomly partitioned in a training
(33% of the instances) subset and a testing (67%) subset.
For all 100 runs made with HMM-EDA, GA, and PBIL, the
corresponding run of each method was conducted using the
same train/test partition. Features selection is conducted
following a wrapper model [4], using a nearest neighbour as
classifier, as it requires no extensive training. The feature
selection problem is to select the 8 best features among the
57 available.

To produce comparable results, we used a different rep-
resentation for each technique: generating a sequence of 8
features for the HMM-EDA approach, using the 8 first ele-
ments of a permutation vector for the GA, and making use of
a bit string of length 57 with PBIL, using the 8 first features
for which the bit is set to 1 in the string.

As for the parametrization, all methods were granted with
a total of 20 000 evaluations and used a tournament selection
of size n = 5. GA and PBIL used a population size of 500.
Also, GA used a crossover/mutation rate of 0.3 and 0.2,
while HMM-EDA used a (µ + λ) algorithm with µ = 250
and λ = 750, and a mutation rate of 0.02. The number of
hidden states was set to 10, since it was empirically found to
allow a sufficient model complexity without compromising
its generalization ability. The learning rate and mutation
probability of PBIL were set to 0.25 and 0.1 respectively.

Results obtained (Fig. 2 and 4) show that the final fit-
ness achieved by both HMM-EDA and GA is the same,
but HMM-EDA converge slightly faster to the optimal so-
lution. The classification rate reached (about 90%) is good
and consistent with the current best classification rates for
this dataset, which is about 93%, but with the use of all
features. PBIL results are quite interesting, because they
clearly show that the combinations of features can have a
considerable impact on the classifier performance. For ex-
ample, two variables taken individually may have little im-
pact when selected as a feature on the performance of the
classifier, but when selected together, the performance of
the classifier might be improved. This hypothesis is verified
by the poor performance of PBIL on this problem. Besides,
HMM-EDA performance on this problem indicates a good
versatility and an implicit adaptability. In other words, re-
lations between variables can be learnt by HMM-EDA, but
the model will not try to learn relations when there are
none, which are both important characteristics for a suc-
cessful adaptive optimization method.

4.2 Travelling Salesman Problem
The Travelling Salesman Problem (TSP) is another classi-

cal optimization problem. The general problem is defined as
the search of the shortest Hamiltonian circuit in a fully con-
nected graph. For GA and HMM-EDA, a potential solution
is represented as a vector of indices, each index designating
a city to visit. The order in which the indices are organized
establishes the order of traversal. For HMM-EDA, observa-
tions corresponding to cities that have already been visited
are masked, as explained in the third paragraph of Sec. 3.1.
The same starting point was used for every evaluated indi-
vidual. Both GA and HMM-EDA were granted with 60 000
evaluations and used a tournament selection of size n = 4.
GA used a population size of 500 and a crossover/mutation

http://deap.gel.ulaval.ca
http://ghmm.org
https://archive.ics.uci.edu/ml/datasets/Spambase


0 5000 10000 15000 20000
Number of evaluations

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91
A

ve
ra

ge
of

b
es

t
fi

tn
es

s
(1

00
ru

n
s,

h
ig

h
er

is
b

et
te

r)

HMM-EDA

GA

PBIL-EDA

Figure 2: Evolution of the fitness against the num-
ber of evaluations performed for Features Selection.

0 10000 20000 30000 40000 50000 60000
Number of evaluations

1200

1400

1600

1800

2000

2200

2400

2600

2800

A
ve

ra
ge

of
b

es
t

fi
tn

es
s

(1
00

ru
n

s,
lo

w
er

is
b

et
te

r)

HMM-EDA

GA

Figure 3: Evolution of the fitness against the num-
ber of evaluations performed for TSP.

rate of 0.3 and 0.2, while HMM-EDA used a (µ + λ) algo-
rithm with µ = 250 and λ = 750, and a mutation rate of
0.02. The number of hidden states was set to 25, as the
highly interdependent values require a much more complex
model. PBIL has not been applied to this problem as the
bit string representation is not suitable for that purpose.

In our experiments, we used a pre-computed graph dataset
containing 24 cities. The optimal solution is known to be of
length 1272. The same dataset was used over the 100 runs.

In this problem (see Fig. 3), GA converges faster than
HMM-EDA, but its final fitness value is significantly worse
than the one obtained by HMM-EDA. As the box-plot (Fig.4)
clearly shows, the latter is often even able to reach the op-
timal path. Moreover, the variance on the GA results is
almost three times that of HMM-EDA, indicating that the
HMM approach is stable over its runs.

5. CONCLUSION
In this paper, we introduced HMM-EDA, a new EDA

based on Hidden Markov Models. Experiments have been
made over two classical problems, with results showing that
the proposed approach is indeed promising: it achieves sim-
ilar if not better performance than a standard permutation
GA and converges more quickly to a good solution. More-
over, it can be easily adapted to virtually any problem with a

HMM-EDA GA
1250

1300

1350

1400

1450

1500

1550

1600

1650

B
es

t
fit

n
es

s
ov

er
10

0
ru

n
s

(l
ow

er
is

b
et

te
r)

HMM-EDA GA

PBIL-EDA

0.88

0.89

0.90

0.91

0.92

B
es

t
fit

n
es

s
ov

er
10

0
ru

n
s

(h
ig

h
er

is
b

et
te

r)

Figure 4: Box plots of the final best fitnesses (left :
TSP, right : Features Selection)

representation based on a finite alphabet, and can be tuned
easily by changing only one parameter (that is, the number
of hidden states). Therefore, HMM-EDA might be of great
interest, especially where other EDAs are likely to fail or
perform poorly.

Acknowledgements
This work has been made possible through funding from
NSERC (Canada) and access to computational resources of
Calcul Québec / Compute Canada. We also thank Annette
Schwerdtfeger for proofreading the manuscript.

6. REFERENCES
[1] E. Alpaydin. Introduction to Machine Learning. MIT

Press, 2nd edition, 2010.

[2] S. Baluja. Population-based incremental learning: a
method for integrating genetic search based function
optimization and competitive learning. Technical
Report CMU-CS-94-163, Carnegie Mellon University,
Pittsburgh, PA, 1994.

[3] P. Bosman and D. Thierens. Crossing the road to
efficient IDEAs for permutation problems. In Proc. of
the Genetic and Evolutionary Computation Conference
(GECCO), 2001.

[4] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157–1182, 2003.

[5] M. Hauschild and M. Pelikan. An Introduction and
Survey of Estimation of Distribution Algorithms.
Swarm and Evolutionary Computation, 1(3):111–128,
2011.

[6] K. P. Murphy. Machine Learning: A Probabilistic
Perspective. MIT Press, 2012.

[7] M. Pelikan, S. Tsutsui, and R. Kalapala. Dependency
trees, permutations, and quadratic assignment problem.
In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO), 2007.

[8] S. Tsutsui. Probabilistic model-building genetic
algorithms in permutation representation domain using
edge histogram. In Parallel Problem Solving from
Nature (PPSN), 2002.


	Introduction
	Hidden Markov Models
	Markov Process
	Markov Chain
	Hidden Markov Models

	Estimation of Distribution Algorithms (EDA)
	Proposed method

	Experiments
	Features Selection for Classification
	Travelling Salesman Problem

	Conclusion
	References

