
Controlling Code Growth by Dynamically

Shaping the Genotype Size Distribution

Marc-André Gardner Christian Gagné Marc Parizeau

marc-andre.gardner.1@ulaval.ca,
christian.gagne@gel.ulaval.ca, marc.parizeau@gel.ulaval.ca

Laboratoire de vision et systèmes numériques
Département de génie électrique et de génie informatique

Université Laval, Québec (Québec), Canada G1V 0A6

Abstract

Genetic programming is a hyperheuristic optimization approach that
seeks to evolve various forms of symbolic computer programs, in order to
solve a wide range of problems. However, the approach can be severely
hindered by a significant computational burden and stagnation of the
evolution caused by uncontrolled code growth. This paper introduces
HARM-GP, a novel operator equalization method that conducts an adap-
tive shaping of the genotype size distribution of individuals in order to
effectively control code growth. Its probabilistic nature minimizes the
computational overheads on the evolutionary process while its generic
formulation allows it to remain independent of both the problem and the
genetic variation operators. Comparative results over twelve problems
with different dynamics, and over nine other algorithms taken from the
literature, show that HARM-GP is excellent at controlling code growth
while maintaining good overall performance. Results also demonstrate the
effectiveness of HARM-GP at limiting overfitting in real-world supervised
learning problems.

1 Introduction

Genetic Programming (GP) has been successfully applied to a wide variety
of problems in machine learning, engineering, physics, biology, and medical
research [30]. The flexibility arising from a variable length assembly of user-
defined primitives makes it a versatile and easy to use hyperheuristic that, over
time, can dynamically adapt the structural complexity of its solutions to specific
problem instances. However, this flexibility comes at a price that can hinder the
applicability of GP, especially for real-world problems where fitness evaluation
is often computationally intensive.

1

A particular issue is the so-called bloat phenomenon, where genotypes tend
to systematically increase in size over time without a corresponding improve-
ment in fitness. This behavior has been observed from the very beginning of
GP [29], has been the subject of various studies [6, 13, 32, 37, 64], and has
led to several approaches [1, 8, 18, 35, 46, 55, 56, 59, 72] to avoid this prob-
lem. Bloat resistant data structures were even proposed [40] to circumvent the
issue. Nonetheless, bloat remains a problem that restricts the application of
GP in various fields, including classification [17], heuristics search [12], genes
identification and analysis [16], and several others [23].

Specifically, bloat is usually defined as “a program growth without significant
return in terms of fitness” [49, 70]. We emphasize the word significant, because
it is important to note that bloat can occur in a population even if there is a
fitness improvement. From this general definition, we can now define a bloated
population as a population in which the individuals grow without significant
return in terms of fitness. The same way, we generalize this at the individual
level by characterizing an individual as bloated when it contains many parts
which do not significantly affect its semantic – in other terms, its output is not
significantly modified given an input, and so is its fitness.

Genotype growth by itself can become problematic as it increases the compu-
tational effort required to allow GP to reach convergence. Again, some solutions
have been proposed to address this issue, such as surrogate models and introns
removal [11], but the problem roots remain: how to permit code growth while
keeping it under control in a generic fashion.

Another less explored aspect of GP is its generalization ability. It has not
received much attention until recently [4, 68], and remains an open issue in
general [42], and for supervised learning applications in particular.

In this paper, we present a new code growth control method named Histogram-
based Accept-Reject Method for GP (HARM-GP). It is part of the broader oper-
ator equalization (OpEq) family [15], but innovates in its use of an accept-reject
method to control the genotype size distribution of a population. Its design is
consistent with most common bloat theories, and it aims at facilitating the use
of GP on practical problems. However, it does not depend on feature-specific
GP and can be used on virtually any variable-length representations.

The remainder of the paper is structured as follows. First, Sec. 2 presents
a review of the existing generic bloat control methods. Next, Sec. 3 provides
a detailed description of HARM-GP, complete with its theoretical foundations.
Exhaustive experimental results are then presented and analyzed in Sec. 4, with
ten methods compared over twelve problems. Sec. 5 follows with a general
discussion of results, and conclusions are drawn in Sec. 6.

2 Bloat Control Methods

This section presents a succinct review of some common bloat control methods.
For a comprehensive review, the reader is referred to [2, 37, 57]. We restrained
ourselves to the current generic bloat control methods. For instance, algebraic

2

simplification [76] or numerical simplification [27] can be quite useful in a re-
gression context, but cannot be applied to a planning problem. In the same way,
one could use different well-known algorithms to simplify boolean expressions,
but these algorithms are not suitable for classification or regression problems.
While we do not dispute the usefulness of these methods in specific contexts,
they do not constitute a generic solution and have therefore not been included
in this review.

2.1 Static Depth Limit

Certainly the simplest, this bloat control method is relatively effective. It as-
sumes that any offspring whose tree depth (or size) is above a threshold is too
bloated to be useful. It is thus rejected and replaced by one of its parents.
Proposed by Koza in his seminal book on GP [29], it remains as one of the
most commonly used approaches to control bloat. Moreover, combining a static
limit with other bloat control methods has been shown to improve efficiency for
some operators [37]. However, setting the limit for non trivial problems without
prior knowledge of the problem’s dynamics may be challenging. It has also been
shown that a fixed limit can be detrimental in some conditions [14].

For our experiments, we will use a static depth limit of 17, as defined by
Koza [29]. Even though it has been demonstrated that it can be both too large
for simple GP problems and too small for more complicated ones [7], it remains
a good reference, and performs relatively well over a wide range of problems,
including more difficult ones. It should also be noted that this setting was also
previously used by most other papers on bloat control [37, 54, 55, 56].

2.2 Dynamic Depth Limit

Proposed by Silva and Costa [55], this method is intended to boost the effi-
ciency of a static limit by allowing it to change during the evolution, depending
on the current population. The limit is initially fixed to a relatively low value
(for instance the depth or the size of the largest individual in the initial popu-
lation). Any individual generated under this limit is unconditionally accepted.
However, an individual not respecting this limit must prove that its larger size
is worthwhile. Usually, this is done by comparing its fitness to the fitness of the
best individual found so far. The individual is then accepted only if it is recog-
nized as the new best-so-far individual. In this case, the limit is also increased
to the size of this new individual, allowing the evolution to move the search
space towards a promising area (that is, the area where the current best known
solution is). As for the static limit, it has been shown by Silva and Costa [55]
that a depth limit is often better than a size limit, and at least not worse.

For our experiments, we will use a non-heavy (non-decreasing) dynamic
depth limit, without an upper static limit, which are essentially the settings
that Silva and Costa recommend as being effective for a broad range of prob-
lems [55]. For each problem, the initial maximum depth was fixed to the height
of the deepest individual generated during the first generation.

3

2.3 Parsimony Pressure and Double Tournament

Instead of using a specific limit (dynamic or not), another family of methods uses
the selection process to restrain bloat. First suggested by Koza [29], one such
approach attempts to apply a penalty on the fitness of the largest individuals.
The difficulty, however, is to parametrize this penalty in a problem-independent
way, and to ensure that the penalty does not promote the small individuals too
much, resulting in poor performance [60]. Other similar methods such as Lexico-
graphic Parsimony Pressure [36] or Biased Multi-objective Parsimony Pressure
[44] have since then been proposed, using the selection process and adding the
size as a second objective against the fitness. But it has been shown that these
methods can be outperformed by a simple static limit in many situations [37].

Another interesting algorithm is the so-called Double Tournament, which,
as its name suggests, uses two successive tournaments for selection: typically
the first acts on tree sizes, selecting the participants of the second tournament
based on fitness [35].

Because size tournaments with two participants tend to apply considerable
size pressure, stochastic tournaments with a smaller average number of partic-
ipants were finally suggested. For instance, a tournament with D = 1.4 par-
ticipants will lead to tournaments with two participants and return the smaller
individual with a probability of D/2 = 0.7, otherwise returning the larger one.

For our experiments, we will use a tournament size of D = 1.4, associated
with a static depth limit of 17, which are the settings recommended by Luke
and Panait [37]. As for the number of participants in the fitness tournaments,
this was adapted to each problem in order to match the selection operator of
other bloat control methods used.

2.4 Tarpeian

The Tarpeian method [46] also makes use of the selection process to control
bloat, but in a different way. It considers that any individual beyond the average
tree size might be undesirable, and thus assigns a very poor fitness to those
individuals with a probability W . For instance, if W = 0.3, each individual
greater than the average size will receive the worst possible fitness with a 30%
chance, effectively reducing the amount of large individuals in the population.

One of the interesting characteristics of this operator is that this fitness
degradation is actually conducted before the evaluation step, therefore leading
to a substantial decrease in computational effort, as the fitness of some of the
large individuals does not have to be evaluated at all. As the evaluation function
usually has a runtime proportional to the size of the individual evaluated, this
greatly reduces the computational effort needed to perform the evolution.

A variant able to automatically set W to follow a given average size target
has been proposed recently [47]. While interesting, because it basically allows
the user to select the mean tree size he wants over the evolution, it does not offer
a complete bloat control method, since the user must still provide the optimal
mean tree size for the problem (which is not trivial in most cases).

4

Algorithm 1 Generic Operator Equalization algorithm.

1: Initialize the population
2: while stop criterion not reached do
3: Estimate the current population size distribution;
4: Determine a target size distribution, possibly using the current distri-

bution;
5: Generate a new population using the target size distribution, by accept-

ing or rejecting individuals stemming from standard selection and variation
operators.

6: end while

For our experiments, we will use the value W = 0.3 as this is the value that
was used in previous comparisons [2, 37], and was shown to perform well in
many situations. Like Double Tournament, it was also augmented with a static
depth limit of 17.

2.5 Prune and Plant

The Prune and Plant method [1] is another recent bloat control operator, which
defines a new offspring generation operator. Basically, the Prune and Plant
operator selects a random non-terminal point in an individual and splits the
individual at this point, effectively producing two new offspring from one parent.
This is somewhat similar to some mutation operators (such as Hoist [26]), but
according to the Prune and Plant authors, it performs better at controlling bloat
than other existing mutation operators.

For our experiments, we will use the operator rate recommended by Alfaro-
Cid et al. [1], that is a rate of 0.5, as it has been shown to provide a good
performance over a wide range of problems.

2.6 Operator Equalization and its Variants

Dignum and Poli first developed a method referred to as Operator Equalization
(OpEq), which is able to reach a given distribution of sizes (flat, triangular,
etc.), by discretizing the distribution over bins of a given width and assigning
an acceptance probability to each of these bins [15]. A very high level descrip-
tion of the OpEq algorithm is given as Algorithm 1. In the case of the seminal
OpEq, the estimation of the current size distribution is simply the population
produced at generation t− 1, the target distribution is a fixed, user-defined size
distribution, and the production of the target is achieved by assigning an accep-
tance probability to each bin. This acceptance probability is proportional to the
ratio of the estimated current size distribution to the target size distribution.

A natural evolution of this operator, called DynOpEq [56], allows a dynamic
adaptation of the target histogram. This operator brings two major changes
to OpEq. First, the target is no longer static, but rather based on fitness,
that is, line 4 in Algorithm 1 is replaced by the computation of a dynamic

5

size distribution. A bin containing better individuals will receive more space in
the next generation, and conversely for weaker individuals. This is designed to
quickly bias the search towards the most promising areas (i.e., size where fitness
is better), and allow the evolutionary process to tune itself to the desired size
distribution [57]. Second, acceptance (line 5) is no longer probabilistic: where
OpEq makes use of an acceptance probability, DynOpEq remembers how many
individuals were accepted in each bin so far in the offspring generation process.
A new offspring can then only be accepted if its corresponding bin is not already
full, or if its fitness is better than the current best individual of this bin. Besides,
an offspring can create a new bin only if its fitness is better than the best-so-far
individual, otherwise it is automatically rejected.

This last characteristic can induce many extraneous fitness evaluations per
generation, as every individual, accepted or not, must have their fitness eval-
uated. This generates important computational overheads, especially in the
early stages of evolution. To avoid this drawback, an incremental version called
MutOpEq was developed [58]. As its name suggests, it makes use of a specific
light mutation operator to modify the rejected individuals so that they can fit
the target: the algorithm searches for the nearest free bin, and mutates the
rejected individual in order to force it to fit into this bin.

During the experiments, it was discovered that the fitness-based target dis-
tribution was not biasing the search as much as expected. A recent paper [54]
indicated that in the specific case of a real-world regression problem, all other
parameters being the same, a flat distribution can outperform a dynamic distri-
bution. This variation is called FlatOpEq, and simply consists in the generation
of a flat target over all tree sizes currently present in the population.

For our experiments, we will use a bin width equal to 2 for all OpEq operators
(DynOpEq, MutOpEq, and FlatOpEq), as a lower value such as 1 can lead to
difficult situations for some problems – for instance, when the primitive set can
only produce odd length genotypes and half of the bins thus remain empty [59],
which is the case when all branches have an arity of 2.

2.7 Spatial Population Structure and Elitism (SS+E)

This recent technique uses an indirect means to control bloat, by mapping the
population onto a 2D torus and using neighborhood-dependent elitist crossover
operations, as defined in [72]. At each generation, an individual is first mated
with one of its neighbors, and one of the generated offspring replaces the indi-
vidual only if it improves fitness; otherwise the individual is left unchanged into
the next generation. By performing this operation for every individual of the
torus, the algorithm effectively controls bloat through spatially local crossovers.

For our experiments, we will use a square number as population size, namely
1024. The spatial structure and the neighborhood computation are the same as
the configuration used in the relevant paper [72].

6

3 HARM-GP

To introduce HARM-GP, we first present some of the most common bloat the-
ories. Then, we build on this foundation and on the seminal OpEq idea [15] to
provide detailed explanations concerning the behavior of HARM-GP.

3.1 Measuring Bloat

The usual definition of bloat, as presented in the introduction, does not precisely
specify the frontier between bloated and non-bloated, nor to which extent a
given population is “bloated”. Although admittedly sufficient for the sake of
textual explanations, it is not sufficient to accurately compare two different
evolutions. A more formal definition of bloat has been established in [70]: the
bloat level. Basically, it measures the ratio of the size increase to the training
fitness improvement. The smaller the value obtained, the less a population is
considered bloated:

b(t) =
(s̄(t)− s̄(0))/s̄(0)

(f̄(0)− f̄(t))/f̄(0)
, (1)

where s̄(t) and f̄(t) are respectively the mean size and the mean training fitness
value at generation t, assuming a minimizing fitness. A bloat level of 0 is
technically a bloat-free population, while any positive value indicates a given
level of bloat.

3.2 Bloat Theories and Analysis

In [51] and [52], Poli and McPhee demonstrated that the expected change in
the average individual size may be expressed as:

E[s̄(t+ 1)− s̄(t)] =
∑
l

l(p(l, t)− Φ(l, t)), (2)

where s̄(t) and s̄(t+1) are the average size at generation t and t+1, l a given size,
p the probability to choose individuals of size l among the population and Φ the
current proportion of individuals of size l. In other words, the average size will
change if and only if there is a disparity between the current size distribution
and the probabilistic selection density. The bloat phenomenon can therefore
be described as a situation where the large individuals have a higher selection
probability than their current proportion in the population [49]. While useful,
this equation in itself does not rationalize the bloat causes. We thus have to
look at some specific bloat emergence theories.

3.2.1 Search Spaces Nature and Varieties of Bloat

The search spaces nature theory [31] states that the fitness selection is respon-
sible for the disparity between p and Φ, at least after the first few generations.
Indeed, reaching a better fitness becomes more and more difficult for an off-
spring as far as the evolution progresses, while producing larger offspring with

7

the same fitness as their parents remains relatively easy, because the search
space is enlarged by the tree size increase. On the contrary, mutations and
crossovers resulting in a tree shrink are often destructive and reduce the off-
spring’s fitness, as shown in [61]. Some types of mutation are often neutral, but
crossover is destructive most of the time while being the main genetic operator
used in most studies. In this way, larger offspring have a proportionally higher
chance of being selected in comparison to smaller offspring which, on average,
exhibit poorer fitness. This results in a gradual drift to larger sizes over genera-
tions. In support to this explanation, it was shown that a GP evolution without
selection pressure (using only random selection) did not exhibit bloat emergence
[22, 33]. Moreover, recent preliminary research gave rise to promising results in
bloat control by using a novelty search instead of a direct fitness measurement
[67].

3.2.2 Structural vs. Functional Bloat

The search space nature theory originally presented in [31] can be extended to
take into account other search space properties, especially the optimum local-
ization. This was actually done in distinct but related work by Amil et al. [4],
in order to support a theoretical analysis of genetic programming. In this paper,
a new distinction was introduced to more accurately characterize the bloat: the
difference between structural and functional bloat. Basically, structural bloat
can be defined as “the code bloat that necessarily takes place when no opti-
mal solution can be approximated by a set of programs with bounded length”.
Functional bloat is defined by the growth of the program size where the current
size already suffices to reach optimal solutions. For instance, if, for a given
problem, an optimal solution is known to require 25 nodes, then an optimal GP
individual with 160 nodes will be characterized as functionally bloated.

There is an interesting aspect to this distinction. Structural bloat can be
seen as an adaptation of the GP evolution process in response to the problem’s
difficulty. In this way, it is hardly avoidable, and even sometimes a desirable
phenomenon. The program growth (including useless subtrees) can simply be
mandatory to better explore the search space. In this context, the higher se-
lection probability granted to the larger offspring is probably desirable. For
instance, the fact that a subtree of an individual is useless at generation t, tak-
ing little or no part in the fitness score of its parent tree, does not mean that
this subtree will remain useless at generation t + 1. A crossover may occur,
placing this subtree in another tree where it will play a major role in its new
individual performance. It was also shown early in the GP history that bloated
trees exhibit a better resistance to the destructive effects of crossovers and mu-
tations [9, 24, 41]. Therefore, a bloat control method which is too restrictive
may actually decrease the performance of the best final solution.

8

3.2.3 Crossover Bias

The crossover bias theory [13] is a more recent theory which does not contradict,
but completes the search space nature theory. It explains bloat emergence
by the crossover operation itself. In GP, by exchanging two random subtrees,
the standard crossover operation does not change the mean tree size, since no
genetic material is actually added or discarded, but it tends to reshape the
tree size distribution. Poli et al. [48] showed that this distribution can be
approximated by a Lagrange distribution of the second kind, which is biased
towards either smaller or larger individuals. But since very small individuals
tend to be unfit, they are also discarded more often by the selection process,
which in turn promotes code growth over generations.

3.3 Generic Bloat Control Model

At this point, it can be useful to derive a generic model for bloat control tech-
niques from Eq. 2. In a bloat control context, Φ(l, t) can be considered as fixed,
since it only depends on the current population. However, it is possible to im-
pede bloat emergence by acting on p(l, t), which will in turn change Φ(l, t+ 1).
This can be seen by the addition of another factor in the equation:

E[s̄(t+ 1)− s̄(t)] =
∑
l

l(λ(l, t)p(l, t)− Φ(l, t)), (3)

where λ(l, t) is a distribution able to constrain p(l, t) to a certain shape. For
instance, the static size limit method can be seen as a simple cutoff point on
the selection probabilities (e.g., λ(l, t) = 0, ∀ l > L where L is a fixed thresh-
old). The parsimony pressure boils down to the use of an arbitrary decreasing
distribution as λ, meaning that a small individual sees its selection probabil-
ity increased while a large one has its own decreased. The covariant Tarpeian
method also directly derives from this equation [47], with the difference that λ
is adjusted at each generation to fit a given mean size target.

However, this ability to change the selection probabilities is not enough to
create a complete bloat control method, since an important question remains:
which optimal distribution should be followed? Some studies have been con-
ducted on that point [15, 47], and conclude that there is simply no general
answer. A given distribution may work well only for some problems, or even for
some instances of a problem. Moreover, even when considering a single instance,
the optimal distribution changes over the evolution. Therefore, the distribution
selection method is crucial to achieving good performance.

3.4 Distribution Alteration by Histogram

While λ(l, t) can be determined analytically under certain conditions, many
methods do not use an analytical solution, but rather implicitly affect the pop-
ulation. Indeed, the discreteness of l naturally leads to the use of a histogram.
Besides providing the possibility of setting the mean tree size like the analytic

9

models, a histogram method has the advantage of also being able to shape the
complete size distribution. In this aspect, OpEq [15] was one of the first suc-
cessful attempts of altering the size distribution by acting only on discrete bins
of the size histogram. Nevertheless, this original paper did not define a way of
computing the optimal size distribution for a given population.

Silva’s OpEq variants [54, 56] attempt to solve this problem, but often at the
expense of a tremendous computational effort, especially when the population
has to be fitted into a size distribution far from its natural distribution (e.g.,
FlatOpEq). Thus, while effective in many ways, those variants cannot always
be used in practice because of the high computational effort they imply [68].

On the other hand, using acceptance probabilities, HARM-GP operates by
dynamically controlling the size distribution of a population over generations.
As the other OpEq variants, it builds on the seminal OpEq idea [15] presented
in Algorithm 1 but uses more efficient mechanisms to ensure that the population
follows a given target. Moreover, it offers a new, original way of computing this
optimal target. Contrary to Dyn/Mut/FlatOpEq, HARM-GP is a probabilistic
method, and works without requiring any extra fitness evaluations. This is an
important characteristic for many real-world problems where an evolution may
require hours or even days to complete [65, 75], because execution time is mostly
dominated by fitness evaluation. The following subsections present the different
elements of the HARM-GP algorithm, first beginning with the refinements to
OpEq, and followed by a complete explanation of the target estimation method.

3.5 Modifications to OpEq

As mentioned before, Operator Equalization was shown to be quite successful in
forcing the population to adopt a given size distribution. However, we identified
some areas where its efficiency and accuracy could be improved. In particular,
we focused on the acceptation procedure and the distribution averaging.

3.5.1 Accept-Reject Method

The original OpEq algorithm makes use of a probability vector, one acceptance
probability being associated with each length. These probabilities are changed
according to the current size distribution. While relatively effective, it suffers
from two related problems. The first one is the forced creation of a “rate”
parameter characterizing the algorithm response time when facing a disturbance
in the histogram. In their paper, Dignum and Poli empirically set this parameter
to a value of 0.1 [15], but this was not motivated and may not be the best
choice for some problems. The second problem is that the speed of convergence
to the desired distribution largely depends on the current one. If the latter is
very different from the former (such as at the beginning of the run), then the
convergence will require many generations, even though it would be possible to
obtain the desired distribution more quickly through rejections.

HARM-GP makes use of a generalized accept-reject method [53] (a.k.a. re-
jection sampling), which solves both of the problems mentioned above. The

10

X

Y

+1.0 +2.5 +4.0 +5.5 +7.0 +8.5 +10.0 +11.5 +13.0 +14.5 +16.0 +17.5 +19.0

+0.1

+0.2

+0.3

+0.4

+0.5

+0.6

+0.7

+0.8

+0.9

+1.0

f(x)

Φ(x)

x

Figure 1: Envelope and target distributions for the accept-reject method.

accept-reject method does not have any parameter, and ensures that the pro-
duced distribution immediately follows the target.

This Monte Carlo method, first proposed by John von Neumann in the early
1950s, generates values following an arbitrary distribution (the target distribu-
tion) from values following another known distribution (the envelope distribu-
tion). The approach consists in accepting a value x generated according to the
envelope distribution φ(x) with a probability p(x) = f(x)/φ(x), that depends
on the ratio of the envelope to the target distributions f(x). It assumes that
the envelope distribution φ(x) is greater or equal to the target distribution f(x)
over the entire domain of x. Formally, the method is defined as follows:

1. Generate random value X ∼ φ(x)

2. Generate uniform random number Y ∼ U(0, 1)

3. If Y ≤ f(X)/φ(X) accept X by returning Z = X, otherwise return to Step
1.

It is easy to show that the distribution of numbers Z will follow the target
distribution f(x).

Fig. 1 illustrates the method by presenting the envelope distribution φ(x) and
the target distribution f(x), which should be less than or equal to the envelope
for all x. The method is commonly used to generate pseudo-random numbers
following arbitrary target distributions, using as an envelope a transformed uni-
form distribution (generally by a constant scaling or a linear transformation).
A key element for an efficient exploitation of this method is to keep the envelope
as close as possible to the target distribution. Otherwise, the rejection rate can
become quite high, requiring many additional computations to fit the target
distribution.

3.5.2 Histogram Smoothing

Another common problem with size histograms in GP comes from the speci-
ficities of the primitive set. In particular, it is common to have only primitives

11

with an even arity (typically two), leading to a histogram where all the even
sizes are unoccupied, simply because it is impossible to generate them. On other
problems, the primitive arities can influence the size distribution, and thus some
sizes are less likely to be obtained than others.

This problem was often addressed through a bin width adjustment [15, 56].
However, this approach requires selecting a bin width parameter that can have
considerable impact on the quality of the estimation. Extremely narrow bins
lead to high noise sensitivity, while excessively large bins lead to possible infor-
mation loss. Moreover, histograms are sensitive to the influence of data close to
frontiers between adjacent bins, which can distort the distribution in random
ways.

Some common methods are better than standard histograms for estimating
a density over a given domain. One of them is the so-called kernel density es-
timation (a.k.a. Parzen window or Parzen-Rosenblatt window), which applies
a kernel function to each distribution value in order to smooth off the distribu-
tion. The mathematical formulation for estimating the distribution f̂(x) from n
points {xi}ni=1 over a real-valued domain is given by the following equation:

f̂(x) =
1

n

n∑
i=1

K(x− xi), (4)

where x is the value at which we want to determine the distribution f̂(x) and K(·)
is the kernel function. Kernel functions are symmetric functions that integrate
to 1; commonly used functions include uniform, triangular, or Gaussian kernels.

In HARM-GP, we used a discrete triangular kernel of width 5, which con-
siderably reduces the noise over the size distribution. Moreover, this setting
was found to be able to adequately smooth the distribution for every problem
tested. The exact mathematical formulation of the normalized kernel is given
by the following equation:

K(x) =

{
0.4/2|x| if x ∈ {−2,−1, 0, 1, 2}

0 otherwise
. (5)

3.6 Target Size Distribution Computation

The production of a given target size distribution in GP leads us to its appli-
cation towards bloat control. The target can greatly affect the performance of
the operator, so it has to be chosen with care. HARM-GP defines its target as
a decaying exponential starting from a dynamically defined cutoff size.

The cutoff size corresponds to the size of the smallest individual which
reaches a certain percentage of the best fitness found so far. Though indi-
viduals smaller than this size can still be bloated, their bloat is more likely to
be structural than functional, according to the definitions given in Sec. 3.2.2. In
other words, finding good solutions which are smaller than the solution selected
for the cutoff size is not likely. If it is possible to find such a solution, it is likely
to adjust the cutoff size at the next generation accordingly.

12

0 10 20 30 40 50 60
Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
e
la

ti
v
e
 f

re
q
u
e
n
c
y

1 2

Figure 2: Size distribution of a population illustrating two possible cases: 1) the
best individual has an average size compared to the population and resides in the
bin designated by arrow #1; and 2) the best individual is large in comparison
with the population size distribution, residing in the bin designated by arrow
#2.

13

Let us consider the two alternatives presented in Fig. 2 where the best in-
dividual is either of average size (case #1), or amongst the larger individuals
(case #2). In the first case, the individuals larger than the best one are likely to
contain functional bloat, since the best individual achieves its fitness score with
a substantially lower number of nodes. On the contrary, in the second case, the
size distribution suggests that if there is bloat occurring in this population, it
is likely to be structural, since the evolution was unable to find any optimum
with a smaller number of nodes. Again, if there actually is a smaller solution,
then we are likely to find it in the next generations, which would bring us back
to case #1.

That being said, using only the absolute best individual can be misleading
in real-world problems. First, because the difference in fitness between the best
and the second best can be negligible, or even simply due to rounding errors.
Second, given that bloat can still have a non-significant effect on an individual
fitness, the best individual could actually be more bloated than a slightly worse
individual with a significant smaller size. Third, an individual with a slightly
better fitness is likely to have memorized one or several samples of the train-
ing set. This memorization does not usually generalize well, and increases the
chances of overfitting. While improving the generalization capability of GP is
not our first objective, it is still an important target to improve its performance.

Typically, we define the cutoff bin as the bin containing the smallest individ-
ual that reaches the top 10 fitness percentile. This is configurable, however, for
example when dealing with a discrete objective function, where we may want
to directly set the cutoff point to the size of the best individual so far.

For sizes which are smaller than the cutoff point, no restriction is enforced at
all: the population simply follows its natural distribution. Even if the crossover
bias theory points out that small unfit individuals may lead to bloat emergence
[14], these individuals themselves are not bloated, and the algorithm has no
reason to reject them (we distinguish causing bloat from being bloated). We
then want to restrain individuals larger than the cutoff size from entering the
population. This is achieved by setting an exponential decay from this cutoff
size. This choice was made considering that the accept-reject method reaches
better efficiency when the target approaches the envelope. Now, the schema
theorems applied to GP show that crossovers produce a gamma distribution
[51]. Consequently, the choice of a decaying exponential is motivated by the
fact that the right hand side of the gamma distribution can be approximated
by a distribution of this type. This choice also has the benefit of minimally
impairing the evolution process, by reducing the number of rejected individuals.
Finally, the decaying exponential does not enforce a too sharp cutoff point in
the distribution, ensuring that individuals larger than the cutoff can still be
accepted. This helps to avoid the degenerated case where the only individuals
allowed would be too small to improve performance, as pointed out by Soule
and Foster [60].

Another interesting property of the decaying exponential is that it can be
characterized by two parameters: its half-life and the area under the curve
(i.e., the total number of individuals larger than the cutoff size allowed). These

14

0 20 40 60 80 100 120 140 160
Size

0

5

10

15

20

25
C

o
u
n
t

Natural

Target

Accept. prob.

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
 o

f
a
c
c
e
p
ta

n
c
e

Cutoff bin

Figure 3: Typical HARM-GP distribution. The acceptance probability is the
ratio of the target to the natural distribution bins. To avoid large variations
between consecutive bins, which would render the graph illegible, the acceptance
probability is only plotted for the odd bins.

parameters can be set to generic values, but can also be used to tune the code
growth pressure according to a specific problem.

Globally, the target generation is given as:

Htar(i) =

{
Hnat(i) if i ≤ c

Γ(M) exp
[
− ln(2)

τ · (xi − xc)
]

otherwise
, (6)

where xc is the size value of the cutoff bin, xi is the size value of the i-th
bin, τ the half-life of the exponential, Γ(M) = γM ln(2)/τ is a function of the
population size M to obtain the desired fraction of population beyond the cutoff
bin (γM individuals, where 0 < γ < 1), Hnat(i) is the count (height) of the i-th
bin of the natural distribution (envelope), and Htar(i) is the count for the target
distribution of the i-th bin.

3.7 Overview of HARM-GP

At this point, we have defined all of the HARM-GP building blocks. The en-
velope distribution of the accept-reject method corresponds to the natural dis-

15

tribution of the population resulting from the selection, crossover, mutation,
and reproduction operators without bloat control and after being filtered by the
kernel density estimator. This corresponds to line 3 of Algorithm 1, and can
easily be estimated by generating many individuals with these operators, keep-
ing in mind that the generated offspring are not wasted, that they can be reused
thereafter. The representation for this distribution is a tree size histogram built
using the kernel density estimation of Eq. 4.

The target distribution (Algorithm 1, line 4) is simply the desired tree size
histogram we wish to obtain, as explained in the previous section. An acceptance
probability is then computed for each bin (Algorithm 1, line 5). This probability
corresponds to the ratio of the target to the natural distributions. For each
individual, the algorithm chooses to accept this individual or not, using the
probability corresponding to its size. Overall, the generated distribution closely
matches the target distribution.

Because of the probabilistic nature of HARM-GP, it is important that the
natural size distribution be estimated using a relatively large number of off-
spring. Since GP already requires large populations to be successful with hard
problems [29], this is not a serious issue in practice. Moreover, there is no need
to evaluate fitness before deciding to accept or reject individuals, decision be-
ing solely based on size. Thus, assuming that fitness evaluation is much more
computationally expensive than offspring generation, the induced overhead com-
pared with standard GP is low, if not negligible.

Of course, being stochastic, HARM-GP may sometimes produce a slightly
different population than the required target. In practice, this is not an issue
either as the deviation remains very small – we asserted this by using standard
histogram distance metrics (i.e., Kullback-Leibler divergence and Bhattacharyya
distance).

Fig. 3 illustrates typical HARM-GP behavior. Notice the shape of the en-
velope distribution, close to the predicted gamma function [50]. As can be seen
by the acceptance probability graph, the algorithm accepts all individuals with
42 nodes or less, but more or less severely restrains the emergence of larger indi-
viduals. For instance, an individual of size 60 has about a 40% chance of being
accepted, while an individual of size 85 has less than a 30% chance, as the nat-
ural distribution tends to promote size 85 more often than others. However, the
acceptance probability increases around size 90-100, where a very small number
of individuals of these sizes are created naturally by the genetic operators.

3.8 Evolutionary Loop

Algorithm 2 presents the high-level evolutionary loop of the HARM-GP proce-
dure. In lines 1 and 2, a population of size M is first initialized in any desired
way. In line 3, the evolutionary loop is run over tmax generations, or until some
other (unspecified here) stopping criteria. In line 4, a temporary population
P ′ of size M ′ is generated using any combination of variation operators (selec-
tion, crossover, mutation, reproduction, etc.) applied to the previous generation
P t−1. Value M ′ is not necessarily related to M , but must be large enough to

16

Algorithm 2 High-level evolutionary loop of HARM-GP.

1: P 0 ← initialize population(M)
2: Estimate fitness of all individuals in P 0

3: for t = 1→ tmax do
4: P ′ ← generate offspring(P t−1,M ′)
5: Hnat ← estimate histogram(P ′)
6: Htar ← create target(Hnat, P

t−1)
7: P t ← ∅
8: repeat
9: if P ′ not empty then

10: j ← choose next(P ′)
11: P ′ ← P ′\{j}
12: else
13: j ← generate offspring(P t−1, 1)
14: end if
15: paccept = Htar(size(j)) /Hnat(size(j))
16: if rand(0, 1) < paccept then
17: P t ← P t ∪ {j}
18: end if
19: until |P t| = M
20: Estimate fitness of all individuals in P t

21: end for

achieve a good estimation of the natural population distribution. A value of
M ′ ≥ max(2000,M) is recommended, that is to say that a minimum value of
2000 individuals should be used in order to obtain a sufficiently accurate esti-
mation. If the population size is greater than this value, then HARM-GP can
benefit from a more precise estimation with these supplementary individuals, as
these would be generated anyway. In line 5, a kernel density estimation of the
size distribution is conducted to determine the natural distribution histogram
Hnat (see Sec. 3.5.2). Line 6 involves the computation of the target distribution
histogram Htar (see Sec. 3.6). Then, the loop between lines 8 to 19 consists in
first selecting an individual j from population P ′ (lines 9 to 14), and adding this
individual to the output population P t if it passes the acceptance test (lines 15
to 18; see Sec. 3.5.1 and 3.6 for details). In the special case where population
P ′ becomes empty (lines 12 and 13), a new offspring must be generated using
the same algorithm as for line 4. Note that this process is assumed not to be
computationally expensive as fitness is not evaluated at this step. As soon as
population P g is complete (line 19), the loop ends and the fitness of all success-
ful individuals is evaluated before completing the current generation (line 20).
Any residual offspring in P ′ are discarded as they are no longer useful. This
may only happen when M ′ > M , but it can be safely assumed that any wasted
computational resources are low, if not negligible for real-world problems, since
these offspring never had their fitness evaluated.

17

0 20 40 60 80 100

Size

0

5

10

15

20

25
C
o
u
n
t

α .05,γ .25, = .9 (reference)

(a) Reference

0 20 40 60 80 100

Size

0

5

10

15

20

25

C
o
u
n
t

α . γ .25,ρ=09

(b) Increased α

0 20 40 60 80 100

Size

0

5

10

15

20

25

C
o
u
n
t

α .05,γ .5, = .9

(c) Increased γ

0 20 40 60 80 100

Size

0

5

10

15

20

25

C
o
u
n
t

α .05,γ .25, = .99

(d) Increased ρ

Figure 4: Examples of different parametrization with the same input population:
(a) recommended parameters used as reference; (b) effect of an increased α; (c)
effect of an increased γ; and (d) effect of an increased ρ.

3.9 Parameters

HARM-GP has three main parameters: α, γ, and ρ. Parameter α defines the
half-life τ = αxc + β of the exponential. The half-life is linearly proportional to
cutoff point xc with a minimal value set to β, so that reasonable size growth is
always possible, even during the first few generations where sizes can be small.
The exact value of β is thus not very important for the algorithm performance.
Parameter γ is used to define the percentage of individuals that are allowed
after the cutoff point. Finally, ρ partly controls the position of the cutoff point,
by setting the range of fitness in which to search for the smallest individual.
For instance, if ρ = 0.9, then the cutoff point will be the size of the smallest
individual of the top 10 fitness percentile. Similarly, a ρ = 1 would always select
the best individual as the cutoff point (if multiple individuals share the same
best fitness, then the one with smallest size is chosen). Fig. 4 presents four
configuration examples, in order to illustrate the effect of each parameter.

18

Table 1: List of used benchmark problems.
Problem Domain
Artificial Ant [29] Planning
Even Parity 8 bits [29] Combinational Logic
Keijzer-6 [25] Symbolic Regression (univariate)
Nguyen-7 [69] Symbolic Regression (univariate)
Pagie-1 [43] Symbolic Regression (2 var.)
Vladislavleva-4 [71] Symbolic Regression (5 var.)
Bioavailability [58] Real-life Symbolic Regression (241 var.)
Dow Chemical [28] Real-life Symbolic Regression (57 var.)
Adult Dataset [74] Real-life Classification (123 features)
Magic Telescope Dataset [10] Real-life Classification (10 features)
Spambase Dataset [34] Real-life Classification (57 features)
PSP100 [5] Real-life Classification (100 features)

3.9.1 Recommended Parameter Values

In all of our experiments, unless stated otherwise, we have used the stable para-
metrization α = 0.05, β = 10, γ = 0.25, and ρ = 0.9 that performs well over
all tested problems. On average, this parametrization generates a population
with 25% of its individuals larger than the cutoff point. Recall that when it
comes to tuning the algorithm, α and γ are the most important parameters.
The first sets the legroom for growth according to the current cutoff point: the
greater the half-life, the higher the chance that larger individuals are accepted.
The second sets the proportion of the population that is allowed to grow in size.
With γ = 0, the number of individuals allowed after the cutoff bin tends to
zero, and size growth becomes impossible. Finally, higher values of ρ can be
used to search more aggressively for slightly better solutions, with the potential
downside of increasing the risk of overfitting. Note that a sensitivity analysis of
these parameters is conducted in Sec. 5.1.

4 Experimentations

To compare the strengths and weaknesses of the different considered bloat con-
trol methods, we conducted experiments on an extensive set of 12 problems, each
with its specific dynamics. The detailed list of problems is given in Tab. 1. Each
method is applied 100 times on every problem, using a common parametrization
summarized in Tab. 2. For each independent run, the same initial population
is provided to each method.

The specific parameters used for the different bloat control algorithms are
those presented in Sec. 2. They are either the default parameters prescribed by
the algorithm’s authors, or values used in previously published papers. They
are the same across the whole problem set.

In the following analysis, a result is said to be significant only if it is asserted

19

Table 2: General parameters used for all experiments.
Parameter Value
Number of independent runs 100
Population size 1024
Crossover distribution Biased towards non-terminals with prob. 0.9
Crossover probability 0.8
Subtree mutation probability 0.1
Replication probability 0.1
Tournament size for selection 8
Initialization method Ramped half-and-half over depth [2, 5]

by a Wilcoxon signed-rank test at p < 0.01, with a continuity correction.

4.1 Comparison Methodology

Controlling bloat, and more generally code growth, is by essence a multiobjec-
tive problem that seeks to maximize performance (in terms of fitness) while
minimizing solution size and computational effort. Performance is obviously
the main objective, but at equivalent performance, smaller solutions obtained
through less computational effort are highly desirable.

To compare the behaviors of the different bloat control methods over the
selected problems, we first allocated a fixed budget of 150 000 fitness evaluations,
corresponding to about 150 times the population size. This budget results in
runs of about 150 generations for most methods, which is more than enough to
both allow convergence and bloat emergence for all problem types. However, in
the cases of DynOpEq and FlatOpEq, because these methods tend to consume a
very large number of evaluations during their first few generations [54, 56], their
budgets were doubled (300 000 evaluations), effectively allowing them to remain
competitive with respect to performance. Otherwise, using the default budget,
they were often observed to perform badly for lack of convergence. Hence, the
reader should keep in mind that, while hindering their computational efficiency,
this special measure also favors their performance.

In the next subsections, results will be analyzed according to the following
criteria, in decreasing order of importance.

1. The performance of the best found solution, named the best-of-run indi-
vidual, as measured by a problem specific minimizing objective function.
Whenever possible, this performance will be measured using a testing data
set independent of the training set that was used to guide the emergence
of this best-of-run solution, and to select it. This is important given that
the fitness computed using the training set is a biased estimator of perfor-
mance that can be quite misleading [3]. Indeed, the evolutionary process
can evolve solutions that learn by rote the samples of the training set
without being able to generalize.

20

In the following, let f∗x,i designate the fitness on the training set of the best-

of-run individual for method x during run i, and let f̄∗x denote either the
median or the average of f∗x,i over all runs. Similarly, let g∗x,i designate the
performance on the testing set of the best-of-run individual for method
x during run i, and let ḡ∗x denote either the median or the average of
g∗x,i over all runs1. For most problems, we prefer the median because
it is less sensitive to outliers. Indeed, even a single non converging run
can greatly affect the average performance. The exceptions are for the
Artificial Ant and Even Parity problems, where we instead prefer the
average, because methods often succeed in producing optimal performance
for these problems, and the median becomes unsuitable for discriminating
between methods, especially when the success rate approaches or exceeds
the 50% mark.

2. The size of the best-of-run solution, as measured by its number of tree
nodes (primitives). The size metric is directly related to the level of bloat
in an individual, which is characterized by unnecessary large individuals.
A smaller solution will tend to overfit less. It will also be faster to compute
and easier to interpret or to integrate into a broader system.

In the following, let s∗x,i designate the size of the best-of-run individual for
method x during run i, and let s̄∗x denote the average of s∗x,i over all runs.

3. The computational effort2 necessary to complete the evolutionary process,
as measured by the cumulative total number of evaluated tree nodes. In
practice, the time required to perform an evolution may prove to be one of
the most limiting factors for real world problems. This metric was used in
previous works to compare the efficiency of different GP variants [66, 69].
It assumes that the fitness evaluation step is the time dominating task in
the evolutionary algorithm, and that this time is proportional to tree size.

In the following, let cx,i be the cumulative total number of evaluated tree
nodes for method x during run i, and let c̄x denote the average of cx,i over
all runs.

4. The level of population bloat, as measured by the bloat level metric (see
Sec. 3.1 and [70]). This metric seeks to quantify the actual bloat control
capacity by comparing relative size increases with relative fitness improve-
ments. The smaller the value, the less a population is considered bloated.
Note that this metric ignores absolute sizes and fitnesses, so should not
be used alone.

In the following, let bx,i designate the final population bloat for method x
during run i, and let b̄x denote the average of bx,i over all runs.

1For two of our twelve problems, namely Artificial Ant and Even Parity, the training and
testing sets are the same, since the task is rather a planning problem (Artificial Ant) or the
training set already samples the full problem space (Even Parity). Considering this, f∗x,i and

g∗x,i refer to the same values for these specific problems.
2We do not refer to the original concept of computational effort developed by Koza, but

rather to the actual processing effort needed to perform an evolution.

21

1 2 3 4 5 6 7 8 9 10

Test error (rank)

1

2

3

4

5

6

7

8

9

10
S
iz

e
 (

ra
n
k
)

Artificial Ant

Even Parity 8

Keijzer-6

Nguyen-7

Pagie-1

Vladislavleva-4

Bioavailability

Dow Chemical

Adult

Magic Telescope

Spambase

PSP-100

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

Figure 5: Best-of-run performance ḡ∗x and size s̄∗x for each method x applied to all
problems. This graph uses the rank of each method as a discrete measurement
to position method specific markers using problem specific colors. The Pareto
fronts are outlined for each problem.

4.2 Results Overview

We first present in this section an overview of results, aggregating the data from
all problems in order to provide an overall picture of the relative performance
of the different methods. Detailed results will follow in Section 4.3.

4.2.1 Scatter Graph

Fig. 5 presents the performance and size ranks of the best-of-run individuals for
each method and each problem. Methods have different markers, and problems
are identified by different colors. All markers inside a given square represent
the same rank position. For this graph, the ideal position is square (1, 1) where
a method achieves both the best fitness and the smallest tree size. Every other
position can be considered as a trade-off between size and performance. Markers

22

that are outlined by a circle and linked by line segments designate those methods
that lie on the Pareto front for a given problem. Note that ranks are discrete
and have no absolute meaning; they should be interpreted with care. Moreover,
even though one method may have a better rank than another, it does not imply
that the difference in performance or size is statistically significant. Detailed
results with statistical significance are presented later.

Interesting patterns emerge from Fig. 5. Some methods generally obtain
very good fitness ranks, for instance SS+E and DynOpEq, but at the cost
of larger sizes. Likewise, other methods often exhibit the smallest sizes, but
at the expense of some fitness, for instance HARM-GP, Double Tournament or
Tarpeian. Overall, the most interesting methods are those that lie on the Pareto
fronts, namely HARM-GP (12/12), Double Tournament (9/12), SS+E (7/12),
Tarpeian (5/12), FlatOpEq (4/12), and Static Limit (4/12). Some methods
are never on the Pareto front, namely Dyn. Depth Limit (0/12) and Prune
And Plant (0/12). Finally, it should be observed that the lengths of the Pareto
fronts vary from 2 methods for Artificial Ant, Bioavailability, and Spambase, to
6 methods for Nguyen-7 and Vladislavleva-4.

4.2.2 Relative Histogram

To better illustrate the magnitude of differences between methods, the double
histogram of Fig. 6 plots relative performances and sizes for each method and
each problem.

For a given problem, the relative performance improvement Gx of method x
is defined by:

Gx =
r̄∗ − ḡ∗x

r̄∗ −min
y∈Y

ḡ∗y
(7)

where r̄∗ represents the median (or average for Artificial Ant and Even Parity) of
the best individuals found in the initial (random) populations used to bootstrap
the different runs, and Y is the set of methods. Note that the value of r̄∗ is
independent of x, because the same 100 initial populations are used to bootstrap
all methods for a given problem. It should also be noted that we assume a
minimizing objective function. A method x with a Gx = 0.95 is thus able to
reach 95% of the maximum observed improvement.

Similarly, the relative size Sx of method x is defined as:

Sx =
s̄∗x

min
y∈Y

s̄∗y
(8)

Thus, the method that achieves the best median (or average) performance will
always obtain a relative improvement of 1, and the method producing the small-
est average solution size will always obtain a relative size of 1. All other values
indicate a performance decrease or a size increase. For instance, a score Sx = 7
indicates that for a given problem, a method x produces solutions that are on
average seven times larger than the best method for size.

23

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 10 100

Relative size (log)

Tarpeian

Static
Depth Limit

SS+E

Prune And
Plant

MutOpEq

HARM-GP

FlatOpEq

DynOpEq

Dyn. Depth
Limit

Double
Tournament

Artificial Ant

Even Parity 8

Keijzer-6

Nguyen-7

Pagie-1

Vladislavleva-4

Bioavailability

Dow Chemical

Adult

Magic Telescope

Spambase

PSP-100

Relative performance improvement on the test set

Figure 6: Per method relative performances and sizes. For the performance
bar-plot (left), a value of Gx = 0.95 indicates that method x reaches 95% of the
best median (or average) observed performance improvement. Similarly, for the
size graph (right), a value of Sx = 7 indicates that method x produces solutions
that are on average seven times larger than the best method for size.

24

It is important to note that these relative results cannot be used to compare
methods across problems, since each problem has its own maximum perfor-
mance improvement and its own baseline size. These relative metrics should
rather be seen as a convenient way to place side-by-side on a common graph the
performance and size results.

These results show that the rankings illustrated in Fig. 5 should indeed
be interpreted with care, because the differences in performance can be rather
small, no matter their statistical significance. For instance, DynOpEq has a
performance loss of 5% or less compared to the best performing method for all
problems except Bioavailability and Dow Chemical. Likewise, HARM-GP never
induces a performance loss of more than 10%, apart for Vladislavleva-4, and is
often under 5%. On the contrary, the size differences can be quite large, even
by orders of magnitude in some cases (notice the log scale for size).

It should finally be noted that the unexpected behavior of most methods on
the Vladislavleva-4 problem can be explained by its high level of difficulty, the
RMSE improvement over the whole evolution being around 0.04 for the best
performing method. Since the best improvement is quite small, even a minimal
loss in performance is seen as a huge relative difference on the bar chart.

4.2.3 Summary Tables

Table 3 allows a global comparison of methods using pairwise statistical Wilcoxon
signed-rank test with p < 0.01. For each criterion (performance, size and effort),
a method that significantly outperforms another obtains +1, while the other re-
ceives −1 when it is significantly worse. When the difference is not significant,
the score given is 0.

This process produces a 10x10 matrix for each problem. We then sum these
matrices to obtain an overview of the general performance. For instance, a
score of +4 at position (i, j) indicates that the method on row i provides better
performance than the one on column j at least four times – it may also perform
better six times, but exhibit a worse performance on two other problems, and
so on. We also provide the sum of each line as an indicator of the method’s
performance against that of every other method. While this sum has to be
interpreted with care, since a positive score for a method necessarily involves
a negative one for the opponent method, it remains a good indicator of the
general performance on each criterion.

Results show that SS+E is the best performing method when considering
only the performance criterion, and HARM-GP obtains the best results in size
and computational effort. However, HARM-GP still obtains good performance
results – in particular, it was only outperformed three times by SS+E, and its
total score gives it a third rank for overall performance – while SS+E exhibits
poor results in terms of both size and effort. Double Tournament and Tarpeian
also reach interesting results in these aspects, but clearly score lower in terms
of performance. Overall the results presented in Table 3 support the analysis of
Fig. 5, but with an added statistical significance.

25

Table 3: Per method pairwise comparisons using a Wilcoxon signed-rank test
with p < 0.01; a significant result counts for either +1 or −1.

Performance 1 2 3 4 5 6 7 8 9 10 Total
(1) Double Tournament 0 2 0 -4 -4 -1 5 -6 -3 0 -11
(2) Dyn. Depth Limit -2 0 -7 -10 -7 -4 4 -11 -3 -4 -44
(3) DynOpEq 0 7 0 -2 2 3 8 -4 2 2 18
(4) FlatOpEq 4 10 2 0 2 7 10 -2 6 5 44
(5) HARM-GP 4 7 -2 -2 0 2 11 -3 1 2 20
(6) MutOpEq 1 4 -3 -7 -2 0 7 -7 -3 -1 -11
(7) Prune And Plant -5 -4 -8 -10 -11 -7 0 -11 -7 -7 -70
(8) SS+E 6 11 4 2 3 7 11 0 6 8 58
(9) Static Depth Limit 3 3 -2 -6 -1 3 7 -6 0 1 2
(10) Tarpeian 0 4 -2 -5 -2 1 7 -8 -1 0 -6

Size 1 2 3 4 5 6 7 8 9 10 Total
(1) Double Tournament 0 10 10 8 -2 10 11 11 12 10 80
(2) Dyn. Depth Limit -10 0 2 -10 -11 -9 -2 -8 -7 -10 -65
(3) DynOpEq -10 -2 0 -10 -12 -10 -5 -8 -9 -10 -76
(4) FlatOpEq -8 10 10 0 -9 2 8 2 -3 -7 5
(5) HARM-GP 2 11 12 9 0 12 11 11 11 8 87
(6) MutOpEq -10 9 10 -2 -12 0 7 -1 -7 -10 -16
(7) Prune And Plant -11 2 5 -8 -11 -7 0 -6 -7 -8 -51
(8) SS+E -11 8 8 -2 -11 1 6 0 -7 -10 -18
(9) Static Depth Limit -12 7 9 3 -11 7 7 7 0 -11 6
(10) Tarpeian -10 10 10 7 -8 10 8 10 11 0 48

Effort 1 2 3 4 5 6 7 8 9 10 Total
(1) Double Tournament 0 12 12 12 -3 10 11 12 12 12 90
(2) Dyn. Depth Limit -12 0 11 -5 -11 -8 -3 -6 -7 -11 -52
(3) DynOpEq -12 -11 0 -9 -12 -12 -8 -10 -10 -12 -96
(4) FlatOpEq -12 5 9 0 -12 -9 3 -5 -8 -11 -40
(5) HARM-GP 3 11 12 12 0 12 11 12 12 8 93
(6) MutOpEq -10 8 12 9 -12 0 8 1 -4 -10 2
(7) Prune And Plant -11 3 8 -3 -11 -8 0 -7 -9 -9 -47
(8) SS+E -12 6 10 5 -12 -1 7 0 -3 -12 -12
(9) Static Depth Limit -12 7 10 8 -12 4 9 3 0 -12 5
(10) Tarpeian -12 11 12 11 -8 10 9 12 12 0 57

26

4.2.4 Results with Equivalent Computational Effort

It is often argued that unlike the absolute fitness performance, the reduction of
computational effort required to complete an evolution is not a priority. Albeit
the ever increasing power of computers can compensate up to a certain point,
an abusive computational effort can still be an issue with prototyping, real-
time applications, large datasets or complex simulations, continuous learning,
or simply when a very large number of runs is needed.

In any case, the comparison of a method requiring ten times the compu-
tational effort of another is unfair, at least in practical terms. We argue that
if a method requires ten times the effort of another, then a run of the former
should be compared to the best among ten runs of the latter. We thus apply
this reasoning and produce new results corrected for equivalent effort.

The methodology used is the following: for each problem, we first select
the best performing method on the testing set. Then we compare its compu-
tational effort to other methods. If another method exhibits an effort n times
smaller than the reference, we produce a total of (n− 1)× 100 additional runs.
Subsequently, we gather the results in 100 × (n− bnc) groups of dne runs and
the remaining results in groups of bnc runs, from which we pick the run that
produced the best individual according to the training fitness. As a result, we
still obtain a total of 100 runs (or meta-runs) for each method, using the same
computational effort. No special treatment is applied to the methods exhibiting
a greater effort.

The results are presented in Fig. 7 and in Table 4. Fig. 7 shows that
the new Pareto fronts, corrected for equivalent effort, are closer to the origin
and contain less methods. The methods appearing most often on the Pareto
fronts are now limited to HARM-GP (12/12), Double Tournament (9/12), and
SS+E (4/12). All other methods are either not present or appear only once.
Table 4 also shows a drastic improvement from the previous section. As can be
seen, with equivalent effort, HARM-GP and Double Tournament see their rela-
tive performance increase notably. This is expected, since these methods were
also the ones using the least effort in Table 3. Interestingly, this performance
improvement does not come with a size increase. On the contrary, they also
increase their relative position with respect to size. This is reflected in Fig. 7,
where they own most of the Pareto fronts.

4.3 Results by Problem Type

Following the overall picture reported in the previous section, we now present
more detailed results. For each problem, we produce a summary table, and,
for selected problems, we also provide a graphical view of the performance and
size evolution. More specifically, we provide the median (or average) best-of-
run performance on both the training and testing sets, the average accumulated
size (computational effort), the average best-of-run solution size, and the average
population bloat level at the last generation.

We draw performance vs. size plots to visually present results in a compact

27

1 2 3 4 5 6 7 8 9 10

Test error (rank)

1

2

3

4

5

6

7

8

9

10

S
iz

e
 (

ra
n
k
)

Artificial Ant

Even Parity 8

Keijzer-6

Nguyen-7

Pagie-1

Vladislavleva-4

Bioavailability

Dow Chemical

Adult

Magic Telescope

Spambase

PSP-100

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

Figure 7: Global results corrected for equivalent effort on performance and size,
for all problems and methods. The graph uses the rank of each method as a
discrete measurement to position markers. The Pareto fronts are outlined for
each problem.

28

Table 4: Per method pairwise comparisons, corrected for equivalent effort, using
a Wilcoxon signed-rank test with p < 0.01; a significant result counts for either
+1 or −1.

Performance 1 2 3 4 5 6 7 8 9 10 Total
(1) Double Tournament 0 11 5 1 -2 9 12 0 2 3 41
(2) Dyn. Depth Limit -11 0 -7 -9 -11 -4 2 -11 -8 -8 -67
(3) DynOpEq -5 7 0 -2 -8 2 8 -4 -1 -3 -6
(4) FlatOpEq -1 9 2 0 -4 6 9 -4 3 -1 19
(5) HARM-GP 2 11 8 4 0 10 12 5 6 6 64
(6) MutOpEq -9 4 -2 -6 -10 0 6 -5 -6 -6 -34
(7) Prune And Plant -12 -2 -8 -9 -12 -6 0 -10 -9 -11 -79
(8) SS+E 0 11 4 4 -5 5 10 0 4 2 35
(9) Static Depth Limit -2 8 1 -3 -6 6 9 -4 0 -2 7
(10) Tarpeian -3 8 3 1 -6 6 11 -2 2 0 20

Size 1 2 3 4 5 6 7 8 9 10 Total
(1) Double Tournament 0 11 10 8 -3 10 12 11 12 10 81
(2) Dyn. Depth Limit -11 0 2 -10 -11 -9 -2 -7 -7 -10 -65
(3) DynOpEq -10 -2 0 -10 -12 -10 -4 -8 -9 -10 -75
(4) FlatOpEq -8 10 10 0 -9 2 10 2 -6 -6 5
(5) HARM-GP 3 11 12 9 0 12 12 12 11 9 91
(6) MutOpEq -10 9 10 -2 -12 0 8 -1 -7 -10 -15
(7) Prune And Plant -12 2 4 -10 -12 -8 0 -8 -10 -11 -65
(8) SS+E -11 7 8 -2 -12 1 8 0 -7 -11 -19
(9) Static Depth Limit -12 7 9 6 -11 7 10 7 0 -10 13
(10) Tarpeian -10 10 10 6 -9 10 11 11 10 0 49

format. While quite different from the usual performance against generation
or size against generation plots, these graphs are more informative since they
combine two of our criteria into a single plot. Thus, at each generation, we begin
by extracting the median (or average) best performance and the average mean
solution size, and plotting this as a point on the graph. By connecting these
points together, we can provide a visual cue of each method’s behavior. For
instance, a method that produces a line going straight down is able to improve
performance without adding size. On the contrary, a left to right horizontal line
indicates a lack of control over bloat.

Figures of this type have been used in previous works on bloat control [46,
58, 70]. However, in our plots, we add a third dimension by positioning the
markers at intervals of 10 000 fitness evaluations. Thus, a method achieving a
given performance improvement using a fewer number of markers can be seen
as making more efficient progress. It should be noted that some markers may
be superimposed, especially at the end of runs where the performance tends not
to improve much, or may extend past the right edge of the graph in some cases.

Detailed results for all problems are also given in Appendix B (see B), along
with a comprehensive description and analysis for each of them.

29

0 50 100 150

Mean size (number of nodes)

0

10

20

30

40

50

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Average best fitness vs. average mean solution size (Artificial Ant)

0 50 100 150

Mean size (number of nodes)

0

20

40

60

80

100

120

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Average best fitness vs. average mean solution size (Even Parity)

Figure 8: Fitness vs size results for Artificial Ant and Even Parity problems.
Over 100 independent runs, graphs plot the average of the best fitness against
the corresponding average mean solution size. Each marker accounts for 10 000
evaluations; some markers may overlap one another, or extend past the right
edge of the graph.

4.3.1 Artificial Problems

Fig. 8 gives performance vs. size curves for the two classical Artificial Ant
(planning) and Even Parity 8 (combinatorial logic) problems. The correspond-
ing numerical results are also given in Table 5.

Regarding the Artificial Ant problem, SS+E obtains the best performance,
with the highest success rate (percentage of runs achieving the best possible
fitness), followed by FlatOpEq and HARM-GP where the success rate is about
30% lower. Even though the size of SS+E solutions are quite reasonable, its
effort and bloat level are noticeably higher, mostly because of higher average
individual size (not only the best-of-runs). This can be seen in Fig. 8(a) where
even after reaching a near-perfect solution, SS+E seems to let the mean solution
size grow considerably without much performance return. Among the other
methods, HARM-GP exhibits a balanced behavior, with a third rank for fitness,
a top rank for the size and computational effort, and a very low bloat level.

Results for Even Parity show the relative simplicity of this problem. How-
ever, it can be observed that HARM-GP is amongst the methods with the best

30

Table 5: Detailed results for artificial problems. Bold numbers indicate per
column best results. When the best is not significantly better than others,
according to a Wilcoxon signed-rank test at p < 0.01, these other results are
also set in bold. Column Fitness (ḡ∗x) is the average best-of-run fitness (less
is better), column Success Rate is the percentage of runs that reached perfect
fitness, column Size is the average best-of-run tree size, column Effort (c̄x) is
the average computational effort, and column Bloat is the average population
bloat level. The values in columns Effort and Size are relative to the smallest
effort and size, respectively. The reference values needed to determine actual
effort and size are given on the Reference line.

Method Fitness (ḡ∗x) Success Rate Size (s̄∗x) Effort (c̄x) Bloat (b̄x)

A
rt

ifi
ci

al
A

n
t

Double Tournament 7.020 43 1.4 1.6 0.7
Dyn. Depth Limit 7.550 43 2.3 2.6 1.8
DynOpEq 6.150 47 2.8 6.9 2.8
FlatOpEq 4.240 59 2.4 7.4 2.5
HARM-GP 5.710 53 1.0 1.0 -0.3
MutOpEq 7.530 41 3.1 3.7 3.5
Prune And Plant 9.530 35 4.6 9.4 26.4
SS+E 1.190 88 1.4 3.1 2.6
Static Depth Limit 8.750 41 3.1 5.6 7.7
Tarpeian 7.830 37 1.7 2.1 1.3
Reference - - 36 4 858 363 -

E
ve

n
P

ar
it

y
8

Double Tournament 21.610 55 2.2 1.9 6.4
Dyn. Depth Limit 10.220 63 2.8 3.3 10.6
DynOpEq 2.640 90 1.5 3.2 4.0
FlatOpEq 3.520 90 1.5 3.3 5.1
HARM-GP 6.400 78 1.0 1.0 3.7
MutOpEq 7.840 77 1.5 1.6 4.9
Prune And Plant 25.960 40 5.8 11.9 94.4
SS+E 3.600 85 3.7 4.4 14.9
Static Depth Limit 13.680 55 3.7 5.9 21.9
Tarpeian 9.530 66 2.6 2.6 5.2
Reference - - 30 4 454 749 -

31

performance (not significantly different from DynOpEq and FlatOpEq), while
also producing the smallest solutions with the least effort, as can be seen on
Fig. 8(b).

4.3.2 Symbolic Regression

Table 6 presents results for the four artificial symbolic regression problems
used in this analysis, namely Keijzer-6, Nguyen-7, Pagie-1, and Vladislavleva-4.
Fig. 9 also shows performance vs. size plots for these problems.

Performance results show that SS+E is the top performer three times out of
four. However, other methods such as DynOpEq, FlatOpEq, and HARM-GP
are generally quite close to this top result, when not statistically equivalent (as
with Pagie-1). On the size aspect, however, HARM-GP outperforms all other
methods. For instance, in Vladislavleva-4, DynOpEq obtains a better RMSE on
the test set than HARM-GP (0.149 vs. 0.165), but at the expense of a solution
17 times larger. In Keijzer-6, HARM-GP obtains a RMSE of 0.021, whereas
SS+E obtains a RMSE of 0.011 but with individuals about five times larger.

On the other hand, some methods produce very small but highly unfit so-
lutions. For instance, Double Tournament seems to have difficulties with these
problems. Indeed, while always very small, the solutions it produces are also
consistently among the worst in terms of fitness. Part of the answer may be
found in the Vladislavleva-4 results. In this problem, Double Tournament com-
pletely crushes the population, so that only very small individuals (a few nodes)
remain, perforce leading to poor performance. As one can see, the bloat level
obtained is negative, because the final mean size is smaller than the initial mean
size. In this particular problem, there is simply no improvement over the whole
evolution! Although to a lesser extent, the same issue arises with the other
regression problems.

Regarding the computational effort, one can see that, as expected, DynOpEq
and FlatOpEq are quite demanding. A similar ascertainment can be made, to
a lesser extent, about SS+E and Dynamic Limits. It is interesting to see that
many of the bloat control methods actually require more computational power
than a standard GP run (with a static limit). Among the top five methods in
performance, HARM-GP is always the method using the less effort, often by an
order of magnitude.

Overall, HARM-GP is always in the top five for performance, along with the
other *OpEq and SS+E. It is also among the methods producing the smallest
solutions, especially when we consider the performance of Double Tournament
and Tarpeian, which are technically superior to HARM-GP regarding the size
aspect, but with a poor fitness value. In all cases, HARM-GP clearly offers one
of the best trade-off between size and performance. This is confirmed by the
bloat level indicator, where HARM-GP obtains the best results (putting aside
the methods with performance issues), except in Pagie-1 where it is slightly
outperformed in this aspect by FlatOpEq.

32

Table 6: Detailed results for artificial symbolic regression problems. Bold num-
bers indicate per column best results. When the best is not significantly better
than others, according to a Wilcoxon signed-rank test at p < 0.01, these other
results are also set in bold. Columns Train Error (f̄∗x) and Test Error (ḡ∗x) are
the RMSE performances as measured on the training and testing set (less is
better), respectively. See Table 5 for a description of the other columns.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)

K
ei

jz
er

-6

Double Tournament 0.032 0.056 1.0 1.1 3.9
Dyn. Depth Limit 0.009 0.035 24.1 18.6 124.1
DynOpEq 0.004 0.016 20.5 29.6 109.3
FlatOpEq 0.004 0.015 9.2 11.5 38.3
HARM-GP 0.008 0.021 1.1 1.0 3.2
MutOpEq 0.008 0.020 4.2 3.5 16.7
Prune And Plant 0.035 0.060 12.9 10.9 59.8
SS+E 0.004 0.011 5.2 5.4 45.9
Static Depth Limit 0.019 0.049 2.0 2.5 9.3
Tarpeian 0.024 0.055 1.8 2.0 8.2
Reference - - 69 5 439 003 -

N
gu

ye
n
-7

Double Tournament 0.010 0.014 1.0 1.0 0.7
Dyn. Depth Limit 0.008 0.013 23.3 12.7 2.9
DynOpEq 0.001 0.005 30.1 32.9 51.7
FlatOpEq 0.002 0.003 13.2 13.0 4.9
HARM-GP 0.003 0.006 2.8 2.2 3.2
MutOpEq 0.003 0.005 7.8 5.6 8.2
Prune And Plant 0.003 0.010 25.8 15.8 32.2
SS+E 0.000 0.001 10.2 8.4 27.9
Static Depth Limit 0.005 0.009 2.7 3.2 3.8
Tarpeian 0.007 0.011 1.9 1.7 1.7
Reference - - 24 2 342 961 -

P
ag

ie
-1

Double Tournament 0.064 0.252 1.0 1.0 0.2
Dyn. Depth Limit 0.051 0.236 23.6 14.8 59.1
DynOpEq 0.040 0.207 24.6 28.7 68.4
FlatOpEq 0.047 0.220 5.0 6.6 3.1
HARM-GP 0.047 0.219 2.2 1.9 3.6
MutOpEq 0.050 0.235 7.8 5.5 11.4
Prune And Plant 0.060 0.239 16.4 10.6 35.5
SS+E 0.048 0.205 7.7 6.5 29.8
Static Depth Limit 0.042 0.217 2.9 3.3 6.4
Tarpeian 0.051 0.234 2.0 1.9 4.2
Reference - - 30 2 741 243 -

V
la

d
is

la
v
le

va
-4

Double Tournament 0.194 0.199 1.0 1.0 -0.7
Dyn. Depth Limit 0.165 0.180 39.2 30.0 58.2
DynOpEq 0.116 0.149 56.7 87.0 113.3
FlatOpEq 0.118 0.150 23.1 34.1 40.8
HARM-GP 0.137 0.165 3.3 3.2 4.1
MutOpEq 0.138 0.163 23.0 19.3 42.2
Prune And Plant 0.194 0.200 10.8 7.8 -0.8
SS+E 0.156 0.171 12.8 14.0 35.4
Static Depth Limit 0.133 0.162 4.7 6.2 9.6
Tarpeian 0.174 0.192 2.7 3.4 2.9
Reference - - 22 1 565 337 -

33

0 50 100 150

Mean size (number of nodes)

0.02

0.04

0.06

0.08

0.10

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Median best RMSE performance vs. average mean solution size (Keijzer-6)

0 20 40 60 80 100 120 140

Mean size (number of nodes)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Median best RMSE performance vs. average mean solution size (Nguyen-7)

0 20 40 60 80 100 120 140

Mean size (number of nodes)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Median best RMSE performance vs. average mean solution size (Pagie-1)

0 50 100 150

Mean size (number of nodes)

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Median best RMSE performance vs. average mean solution size (Vladislavleva-4)

Figure 9: Performance vs size results for the artificial symbolic regression prob-
lems: Keijzer-6, Nguyen-7, Pagie-1, and Vladislavleva-4. Over 100 indepen-
dent runs, these graphs plot the median of the best Root Mean Square Error
(RMSE) performance, against the corresponding average mean solution size.
Each marker accounts for 10 000 evaluations; some markers may overlap one
another, or extend past the right edge of the graph.

34

Table 7: Detailed results of real-life symbolic regression problems. Bold numbers
indicate per column best results. When the best is not significantly better than
others according to a Wilcoxon signed-rank test at p < 0.01, these other best
results are also set in bold. See Table 6 for a description of columns.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)

B
io

av
ai

la
b
il
it

y

Double Tournament 27.874 33.903 1.6 2.0 6.0
Dyn. Depth Limit 27.076 36.457 31.8 27.7 143.5
DynOpEq 24.581 46.796 34.9 58.9 148.9
FlatOpEq 27.829 33.019 3.7 4.7 5.0
HARM-GP 28.691 31.511 1.0 1.0 1.8
MutOpEq 27.273 35.539 7.6 6.6 23.4
Prune And Plant 28.333 36.449 14.9 10.1 41.7
SS+E 28.707 31.332 7.8 6.1 44.7
Static Depth Limit 25.690 33.982 4.3 5.8 20.8
Tarpeian 26.305 34.847 3.3 4.2 26.8
Reference - - 100 6 280 874 -

D
ow

C
h
em

ic
al

Double Tournament 0.221 0.234 3.9 1.0 -0.6
Dyn. Depth Limit 0.182 0.257 185.4 27.7 63.4
DynOpEq 0.159 0.228 198.6 52.6 65.8
FlatOpEq 0.268 0.271 1.0 17.9 0.6
HARM-GP 0.181 0.201 7.9 1.7 1.0
MutOpEq 0.175 0.195 59.5 10.2 15.9
Prune And Plant 0.284 0.274 11.5 1.7 -0.8
SS+E 0.180 0.193 38.1 5.6 18.7
Static Depth Limit 0.164 0.231 19.7 5.3 5.6
Tarpeian 0.184 0.222 12.3 2.9 2.7
Reference - - 7 2 199 072 -

4.3.3 Real-life Symbolic Regression

The detailed results for the two real-life regression problems, namely Bioavail-
ability and Dow Chemical, are summarized in Table 7 and illustrated in Fig. 10.
In this figure, along with median performance vs. average size plots, we produce
two other graphs for Bioavailability. The first (Fig. 10(c)) provides a boxplot of
the best-of-run individual size, while the last one (Fig. 10(d)) is a boxplot for
the final bloat level.

When we consider these results, we can note that HARM-GP is not the best
performing method in terms of training error. However, the error on the test
set depicts an entirely different situation, where HARM-GP is second – actually
not significantly different from the best method. In other words, as discussed
in Sec. 4.1, the good performance of other methods on the training set is due to
overfitting and does not represent the actual performance of these methods on
real-world applications. Besides, HARM-GP again produced individuals up to
seven times smaller than all other methods with a non-significant difference in
test fitness, which is interesting in the case of a real-world problem, where we
would like to analyze the solution obtained. Among all methods, HARM-GP
also uses the smallest effort, and obtains the best score regarding the bloat level.

These observations also apply to the Dow Chemical problem, where despite
being surpassed by other techniques such as Static Depth Limit in terms of
training RMSE, HARM-GP scores among the best performers according to the

35

0 50 100 150 200

Mean size (number of nodes)

30

32

34

36

38

40

42

44

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Median RMSE performance vs. average mean solution size (Bioavailability)

0 50 100 150

Mean size (number of nodes)

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Median RMSE performance vs. average mean solution size (Dow Chemical)

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

200

400

600

800

1000

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(c) Best-of-run size boxplot (Bioavailability)

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

20

40

60

80

100

B
lo

a
t

le
v
e
l

(d) Bloat level boxplot, according to Eq. 1, less is better (Bioavailability)

Figure 10: Results for the Bioavailability and Dow Chemical symbolic regres-
sions: (a) and (b) present the median over 100 runs of the RMSE on the testing
set of the individual achieving the best performance on the training set, ac-
cording to the mean size of the population, each marker accounting for 10 000
evaluations; (c) boxplot of the best-of-run individual size for Bioavailability; (d)
boxplot of the bloat level at the last generation, again for Bioavailability.

36

0 50 100 150 200

Mean size (number of nodes)

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Median best classification error performance vs. mean solution size (Adult)

0 50 100 150 200

Mean size (number of nodes)

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Median best classification error performance vs. mean solution size (Magic Telescope)

Figure 11: Performance vs size results for the Adult and Magic classification
problems. Over 100 independent runs, these graphs plot the median of the
best classification error performance, against the corresponding average mean
solution size. Each marker accounts for 10 000 evaluations; some markers may
overlap one another, or extend past the right edge of the graph.

RMSE on the testing set (again not significantly worse than the best method).
The only two methods able to reach a similar RMSE on the testing set also
produce solutions four and six times larger, and use at least three times the
HARM-GP computational effort to do so. In this problem, one could also
note the poor performance of FlatOpEq, caused by the tremendous number of
evaluations it needs to start an evolution. Even when given twice the number
of evaluations of other techniques, FlatOpEq is barely able to complete more
than a few generations, and thus accordingly obtained a relatively high RMSE.

4.3.4 Classification

Finally, we present detailed results for the four classification problems used.
The required binary classification is obtained by simply using a fixed threshold
(at 0) on a real-valued, regression output. Table 8 shows numerical results for
all problems, and Fig. 11 the evolution of size and performance for the Adult
and Magic Telescope datasets.

In this category, the performance gap between the methods substantially

37

Table 8: Detailed results of real-world classification problems conducted with
the different bloat control methods. Bold numbers indicate the best result for
each column. If the best result is not significantly better than others according
to a Wilcoxon signed-rank test at p < 0.01, these other best results are also set in
bold. Columns Train Error (f̄∗x) and Test Error (ḡ∗x) are the classification error
rates as measured on the training and testing set (less is better), respectively.
See Table 5 for a description of the other columns.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)

A
d
u
lt

Double Tournament 0.158 0.158 1.9 2.3 2.9
Dyn. Depth Limit 0.164 0.164 20.8 17.0 40.0
DynOpEq 0.159 0.160 26.5 41.1 52.4
FlatOpEq 0.157 0.158 12.3 19.4 13.6
HARM-GP 0.161 0.160 1.0 1.0 0.2
MutOpEq 0.159 0.159 7.2 8.3 14.1
Prune And Plant 0.162 0.162 17.0 11.1 36.2
SS+E 0.164 0.162 5.8 6.4 18.0
Static Depth Limit 0.156 0.158 6.6 7.9 13.8
Tarpeian 0.156 0.158 4.0 4.5 7.2
Reference - - 65 4 630 486 -

M
ag

ic
T

el
es

co
p

e

Double Tournament 0.149 0.159 1.8 2.1 4.0
Dyn. Depth Limit 0.144 0.161 22.3 20.0 55.9
DynOpEq 0.137 0.155 19.4 40.2 52.4
FlatOpEq 0.141 0.153 7.8 15.3 14.7
HARM-GP 0.153 0.160 1.0 1.0 0.3
MutOpEq 0.147 0.163 7.2 8.8 16.2
Prune And Plant 0.156 0.167 14.9 13.3 46.8
SS+E 0.153 0.159 7.7 7.4 26.9
Static Depth Limit 0.139 0.157 5.8 7.7 15.5
Tarpeian 0.140 0.158 3.3 4.4 7.8
Reference - - 78 4 858 638 -

S
p
am

b
as

e

Double Tournament 0.064 0.077 1.5 2.6 3.2
Dyn. Depth Limit 0.068 0.085 12.5 16.0 37.3
DynOpEq 0.058 0.081 11.2 31.3 27.5
FlatOpEq 0.063 0.080 5.5 12.1 10.4
HARM-GP 0.071 0.080 1.0 1.0 0.3
MutOpEq 0.069 0.087 4.8 7.3 12.6
Prune And Plant 0.072 0.085 16.0 19.1 45.1
SS+E 0.068 0.080 12.0 11.0 41.2
Static Depth Limit 0.059 0.079 3.7 6.6 10.8
Tarpeian 0.064 0.080 2.1 3.6 5.2
Reference - - 98 5 210 493 -

P
S
P

10
0

Double Tournament 0.246 0.267 1.0 1.7 2.7
Dyn. Depth Limit 0.251 0.272 8.4 10.5 40.7
DynOpEq 0.238 0.269 10.2 26.4 42.0
FlatOpEq 0.243 0.270 4.4 10.2 12.7
HARM-GP 0.248 0.268 1.0 1.0 0.8
MutOpEq 0.249 0.278 4.2 6.6 16.6
Prune And Plant 0.253 0.276 10.1 11.0 52.2
SS+E 0.248 0.265 9.3 7.8 53.1
Static Depth Limit 0.242 0.269 2.4 4.3 11.0
Tarpeian 0.248 0.271 1.7 2.7 5.7
Reference - - 98 5 461 516 -

38

shrinks compared to the previously analyzed problems. Double Tournament
obtains good results and is usually among the best performing methods, while
HARM-GP does not score in the first place when considering the classification
error rate. However, this must be put into context. The accuracy difference be-
tween HARM-GP and the best method is around 0.002 for Adult, and 0.003 for
Spambase. Considering the size of these datasets, it thus implies that HARM-
GP misses about 32 samples more than the best method over the 16 281 Adult
test set instances. Similarly, the median difference between HARM and the best
performing alternative in Spambase represents four missed test instances over
1380. This is a very minimal loss, especially considering that the solution size
is reduced by a factor of 2 and 1.5, respectively.

Regarding the size of the produced solutions and the computational effort,
HARM-GP consistently produces the smallest solutions with the lesser effort.
The bloat level also reflects this good behavior, with HARM-GP runs being
essentially bloat-less according to this indicator.

The trade-off between performance, size and effort is clearly illustrated in
Fig. 11. The figure indicates that for almost every size, HARM-GP generates
a solution better than any other method. This can also be seen backwards: at
almost every performance level, the solutions produced by HARM-GP are the
smallest among all methods. The large space between markers at the beginning
of the HARM-GP curves is also interesting. Because these markers are evenly
spaced regarding the number of evaluations, it implies that HARM-GP is able
to reach a given performance faster than most of the other methods.

5 Discussion

Results show that HARM-GP is consistently among the best methods regarding
the size of the produced individuals. Moreover, when it is surpassed in this
aspect, it is usually by other methods obtaining a very poor fitness rank (such
as Double Tournament on Keijzer-6, Pagie-1 or Nguyen-7, or FlatOpEq on Dow
Chemical).

Of course, producing small individuals is not enough, and one could note
that it is not a difficult task if they are all unfit. However, in the light of the
results presented herein, this is clearly not the case for HARM-GP. Fig. 6 shows
that the performance loss relative to the best method is always less than 10%,
apart for the Vladislavleva-4 regression, which is explained by the metric used.
Actually, when taking into account statistical significance, HARM-GP is able
to reach the first performance rank (tied with other methods) four times over
the twelve problems.

While this is already a good result, it still means that other methods are
often able to obtain better solutions. Indeed, one could argue that SS+E ex-
hibits a better performance, reaching the first rank six times on the testing set.
However, our results point out that the fundamental reason for this performance
difference should be sought in the computational effort used. When we assign
the same computing resources to each method, as described in Sec. 4.2.4, results

39

change drastically: HARM-GP then holds (alone or tied with others) the first
performance rank nine times out of twelve, and reaches another second place,
without affecting its ability to produce small solutions. Table 4 shows that with
equivalent effort, HARM-GP is able to surpass on average all other methods on
both performance and size, and this despite the fact that the equivalent effort
has actually degraded its rank on the Spambase problem3. Moreover, as we did
not penalize methods using more computational effort than the best perform-
ing one, the effort used by HARM-GP is still often smaller than that of other
methods. While this set of results has to be treated with caution, since it partly
depends on the problem set used, it remains an interesting ascertainment about
HARM-GP’s level of performance.

These results clearly demonstrate the importance of taking into account the
computational effort when comparing two or more GP heuristics such as bloat
control methods. The equivalent computational effort gives a different picture
of the situation, and not only for HARM-GP. Indeed, Double Tournament and
Tarpeian also achieve interesting performance gains in this context. This result
is not surprising: as Silva already noted [54], the greater the effort allocated to
a method, the more it can explore the search space and perform well.

5.1 Sensitivity Analysis of Parameters

The set of parameters given in Sec. 3.9.1 was used for all of the aforementioned
problems, with good results. However, it is important to see the effect of each
parameter, especially to ensure that there is no breakpoint in the parameter
space, where the performance would suddenly drop after a slight change in the
settings. Detailed results on sensitivity analysis made on the Bioavailability
problem are given in Appendix A (see A).

Results show that while a different parametrization does induce some changes
in the output results, it does not modify the typical behavior of HARM-GP. The
size curve simply increases to a different level than the reference configuration,
where it stabilizes itself. Similarly, the train RMSE shows a different final
result for each parametrization, but nothing fundamentally changes. This is
an important characteristic, because it indicates that HARM-GP can be tuned
step-by-step, without the risk of a small change having a serious negative impact
on the method’s performance.

6 Conclusion

Overall, results show that HARM-GP is able to strongly restrain bloat emer-
gence, producing smaller solutions on a broad range of problems, while mostly
preserving performance, especially when allocated equivalent computing re-
sources to those required by the method reaching the best performance. In

3As we select the runs only based on their fitness on the training set, we actually increase
the likelihood of overfitting, and thus impact test error. Using a validation set would prevent
this and allow better generalization results.

40

particular, amongst all tested methods, HARM-GP was the only one that sys-
tematically appeared on every fitness-size Pareto front, regardless of the prob-
lem. Furthermore, for all tested problems, HARM-GP always performed well,
albeit without necessarily being the best, contrary to other methods that exhib-
ited their limitations on at least one problem, either in terms of performance or
size, or both.

The probabilistic nature of HARM-GP plays a very important role in these
results: it allows sampling of a non-bloated target distribution from the arbitrary
natural distribution that stems from the application of genetic operators. The
fact that fitness is only used to define the target (choose the right distribution to
attain), not to reach it (generate the wanted distribution with standard variation
operators applied to the current population), is another key characteristic of the
algorithm. It ensures the independence of HARM-GP with respect to fitness
space, including the case of multi-objective fitness, which is essential to avoid
inducing an unwanted elitist bias in the reproduction process. Considering these
key characteristics, HARM-GP and its underlying concept could be applied to
other evolutionary algorithms that utilize variable length genotypes.

In addition to introducing HARM-GP, this paper also features a comprehen-
sive review of many of the most well known bloat control methods, highlighting
both their strengths and weaknesses. The full results are given in an online
appendix (see B) that compares the ten methods over twelve problems. It is
suggested that this review could constitute a future reference base for various
GP benchmark problems which have not yet been thoroughly tested, because
of their recent introduction in [73].

In this paper, we have focused on the bloat control property of HARM-GP.
A future work of interest would be to focus more on its ability to limit over-
fitting (using classification and regression problems). We think that by slightly
changing the internal mechanisms of the algorithm, for instance by changing the
cutoff point definition to the individual that generalizes the most, regardless of
its size, one could explore a promising avenue to tackle the important, currently
open issue of overfitting in genetic programming.

Open source implementations of HARM-GP are available in the DEAP4

Python library [19] and in the Open BEAGLE5 C++ framework [21].

acknowledgements

We acknowledge the financial support of the NSERC (Canada) and FRQ-NT
(Québec), and the access to supercomputing facilities of Calcul Québec / Com-
pute Canada. We also thank Annette Schwerdtfeger for proofreading the manuscript.

4http://deap.gel.ulaval.ca
5http://beagle.gel.ulaval.ca

41

http://deap.gel.ulaval.ca
http://beagle.gel.ulaval.ca

References

[1] E. Alfaro-Cid, A. Esparcia-Alcázar, K. Sharman, F. Fernandez de Vega,
and J. J. Merelo. Prune and plant: a new bloat control method for genetic
programming. In Proc. of the international conference on Hybrid Intelligent
Systems (HIS), pages 31–35, 2008.

[2] E. Alfaro-Cid, J. J. Merelo, F. Fernandez de Vega, A. Esparcia-Alcazar, and
K. Sharman. Bloat control operators and diversity in genetic programming:
A comparative study. Evolutionary Computation, 18(2):305–332, 2010.

[3] E. Alpaydin. Introduction to machine learning. MIT press, 2004.

[4] N. Amil, N. Bredeche, C. Gagné, S. Gelly, M. Schoenauer, and O. Teytaud.
A statistical learning perspective of genetic programming. In Proc. of the
European Conference on Genetic Programming (EuroGP), pages 327–338,
2009.

[5] J. Bacardit, M. Stout, N. Krasnogor, J. D. Hirst, and J. Blazewicz. Coor-
dination number prediction using learning classifier systems: performance
and interpretability. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO), pages 247–254, 2006.

[6] W. Banzhaf and W. B. Langdon. Some considerations on the reason for
bloat. Genetic Programming and Evolvable Machines, 3(1):81–91, 2002.

[7] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Pro-
gramming: An Introduction. Morgan Kaufmann, 1997.

[8] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler. Multiobjective genetic
programming: reducing bloat using SPEA2. In Proc. of the Congress on
Evolutionary Computation (CEC), volume 1, pages 536–543, 2001.

[9] T. Blickle and L. Thiele. Genetic programming and redundancy. In Genetic
Algorithms within the Framework of Computation (Workshop at KI-94),
1994.

[10] R. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jǐrina,
J. Klaschka, E. Kotrč, P. Savickỳ, S. Towers, et al. Methods for multidi-
mensional event classification: a case study using images from a Cherenkov
gamma-ray telescope. Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 516(2):511–528, 2004.

[11] M. Brameier and W. Banzhaf. A comparison of linear genetic program-
ming and neural networks in medical data mining. IEEE Transactions on
Evolutionary Computation, 5(1):17–26, 2001.

[12] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward. A genetic program-
ming hyper-heuristic approach for evolving 2-D strip packing heuristics.
IEEE Transactions on Evolutionary Computation, 14(6):942–958, 2010.

42

[13] S. Dignum and R. Poli. Generalisation of the limiting distribution of pro-
gram sizes in tree-based genetic programming and analysis of its effects on
bloat. In Proc. of the Genetic and Evolutionary Computation Conference
(GECCO), pages 1588–1595, 2007.

[14] S. Dignum and R. Poli. Crossover, sampling, bloat and the harmful effects
of size limits. In Proc. of the European Conference on Genetic Programming
(EuroGP), pages 158–169, 2008.

[15] S. Dignum and R. Poli. Operator equalisation and bloat free GP. In Proc.
of the European conference on Genetic Programming (EuroGP), pages 110–
121, 2008.

[16] K. Dimitrios, K. Aigli, T. Konstantinos, L. Spiros, T. Athanasios, and
M. Seferina. Where we stand, where we are moving: Surveying computa-
tional techniques for identifying miRNA genes and uncovering their regu-
latory role. Journal of Biomedical Informatics, 46(3):563–573, 2013.

[17] P. G. Espejo, S. Ventura, and F. Herrera. A survey on the application
of genetic programming to classification. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 40(2):121–144,
2010.

[18] J. Fitzgerald, R. Azad, and C. Ryan. Bootstrapping to reduce bloat and
improve generalisation in genetic programming. In Companion Proc. of
the Genetic and Evolutionary Computation Conference (GECCO), pages
141–142, 2013.

[19] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné. DEAP: Evolutionary algorithms made easy. Journal of Ma-
chine Learning Research, 2171-2175(13), 7 2012.

[20] M. A. Franco, N. Krasnogor, and J. Bacardit. Post-processing operators for
decision lists. In Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO), GECCO ’12, pages 847–854, New York, NY, USA, 2012.

[21] C. Gagné and M. Parizeau. Genericity in evolutionary computation soft-
ware tools: Principles and case study. International Journal on Artificial
Intelligence Tools, 15(2):173–194, 4 2006.

[22] S. Gelly, O. Teytaud, N. Bredeche, and M. Schoenauer. A statistical learn-
ing theory approach of bloat. In Proc. of the Genetic and Evolutionary
Computation Conference (GECCO), pages 1783–1784, 2005.

[23] L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, and A. Pazos. Automatic
feature extraction using genetic programming: An application to epileptic
EEG classification. Expert Systems with Applications, 38(8):10425–10436,
2011.

43

[24] K. Harries and P. Smith. Code growth, explicitly defined introns and alter-
native selection schemes. Evolutionary Computation, 6(4):346–364, 1998.

[25] M. Keijzer. Improving symbolic regression with interval arithmetic and lin-
ear scaling. In Proc. of the European Conference on Genetic Programming
(EuroGP), pages 70–82, 2003.

[26] K. Kinnear Jr. Evolving a sort: Lessons in genetic programming. In Proc.
of the IEEE International Conference on Neural Networks (ICNN), pages
881–888, 1993.

[27] D. Kinzett, M. Johnston, and M. Zhang. Numerical simplification for bloat
control and analysis of building blocks in genetic programming. Evolution-
ary Intelligence, 2(4):151–168, 2009.

[28] A. Kordon, G. Smits, E. Jordaan, and E. Rightor. Robust soft sensors based
on integration of genetic programming, analytical neural networks, and
support vector machines. In Proc. of the IEEE International Conference
on E-Commerce Technology, volume 1, 2002.

[29] J. R. Koza. Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992.

[30] J. R. Koza. Human-competitive results produced by genetic programming.
Genetic Programming and Evolvable Machines, 11(3-4):251, 2010.

[31] W. Langdon and R. Poli. Fitness causes bloat. In Soft Computing in En-
gineering Design and Manufacturing, pages 13–22. Springer London, 1998.

[32] W. Langdon, T. Soule, R. Poli, and J. Foster. The evolution of size and
shape. In Advances in Genetic Programming III, chapter 8, pages 163–190.
MIT Press, 1999.

[33] W. B. Langdon and R. Poli. Foundations of genetic programming. Springer,
2002.

[34] S. M. Lee, D. S. Kim, J. H. Kim, and J. S. Park. Spam detection using
feature selection and parameters optimization. In Proc. of the Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems
(CISIS), pages 883–888, Washington, DC, USA, 2010.

[35] S. Luke and L. Panait. Fighting bloat with nonparametric parsimony pres-
sure. In Proc. of Parallel Problem Solving from Nature (PPSN), pages
411–421, 2002.

[36] S. Luke and L. Panait. Lexicographic parsimony pressure. In Proc. of
the Genetic and Evolutionary Computation Conference (GECCO), pages
829–836, 2002.

[37] S. Luke and L. Panait. A comparison of bloat control methods for genetic
programming. Evolutionary Computation, 14(3):309–344, 2006.

44

[38] M. G. Madden. On the classification performance of TAN and general
Bayesian networks. Knowledge-Based Systems, 22(7):489–495, 2009.

[39] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Van-
neschi, W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, et al. Genetic
programming needs better benchmarks. In Proc. of the Genetic and Evo-
lutionary Computation Conference (GECCO), pages 791–798, 2012.

[40] J. F. Miller and P. Thomson. Cartesian genetic programming. In Proc. of
the European Conference on Genetic Programming (EuroGP), pages 121–
132, 2000.

[41] P. Nordin, W. Banzhaf, et al. Complexity compression and evolution.
In Proc. of the International Conference on Genetic Algorithms (ICGA),
pages 310–317, 1995.

[42] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf. Open issues
in genetic programming. Genetic Programming and Evolvable Machines,
11(3-4):339–363, 2010.

[43] L. Pagie and P. Hogeweg. Evolutionary consequences of coevolving targets.
Evolutionary computation, 5(4):401–418, 1997.

[44] L. Panait and S. Luke. Alternative bloat control methods. In Proc. of
the Genetic and Evolutionary Computation Conference (GECCO), pages
630–641, 2004.

[45] J. Platt et al. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in large margin clas-
sifiers, 10(3):61–74, 1999.

[46] R. Poli. A simple but theoretically-motivated method to control bloat in
genetic programming. In Proc. of the European Conference on Genetic
Programming (EuroGP), pages 204–217, 2003.

[47] R. Poli. Covariant tarpeian method for bloat control in genetic program-
ming. In Genetic Programming Theory and Practice VIII, pages 71–89.
Springer, 2011.

[48] R. Poli, W. B. Langdon, and S. Dignum. On the limiting distribution of
program sizes in tree-based genetic programming. In Proc. of the European
Conference on Genetic Programming (EuroGP), pages 193–204, 2007.

[49] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. freely available at http://www.gp-field-guide.org.uk,
2008.

[50] R. Poli and N. F. McPhee. Exact schema theorems for gp with one-point
and standard crossover operating on linear structures and their application
to the study of the evolution of size. In Proc. of the European Conference
on Genetic Programming (EuroGP), 2001.

45

http://www.gp-field-guide.org.uk

[51] R. Poli and N. F. McPhee. General schema theory for genetic program-
ming with subtree-swapping crossover: Part II. Evolutionary Computation,
11(2):169–206, 2003.

[52] R. Poli and N. F. McPhee. Parsimony pressure made easy. In Proc. of
the Genetic and Evolutionary Computation Conference (GECCO), pages
1267–1274, 2008.

[53] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo
method. Wiley-Interscience, 2008.

[54] S. Silva. Reassembling operator equalisation: a secret revealed. In Proc. of
the Genetic and Evolutionary Computation Conference (GECCO), pages
1395–1402, 2011.

[55] S. Silva and E. Costa. Dynamic limits for bloat control in genetic program-
ming and a review of past and current bloat theories. Genetic Programming
and Evolvable Machines, 10(2):141–179, 2009.

[56] S. Silva and S. Dignum. Extending operator equalisation: Fitness based
self adaptive length distribution for bloat free GP. In Proc. of the European
Conference on Genetic Programming (EuroGP), pages 159–170, 2009.

[57] S. Silva, S. Dignum, and L. Vanneschi. Operator equalisation for bloat
free genetic programming and a survey of bloat control methods. Genetic
Programming and Evolvable Machines, 13(2):197–238, 2011.

[58] S. Silva and L. Vanneschi. Operator equalisation, bloat and overfitting: a
study on human oral bioavailability prediction. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO), pages 1115–1122, 2009.

[59] S. Silva and L. Vanneschi. The importance of being flat – studying the pro-
gram length distributions of operator equalisation. In Genetic Programming
Theory and Practice IX, pages 211–233. Springer, 2011.

[60] T. Soule and J. A. Foster. Effects of code growth and parsimony pressure on
populations in genetic programming. Evolutionary Computation, 6(4):293–
309, 1998.

[61] T. Soule and R. B. Heckendorn. An analysis of the causes of code growth
in genetic programming. Genetic Programming and Evolvable Machines,
3(3):283–309, 2002.

[62] L. Spector and T. Helmuth. Uniform linear transformation with repair and
alternation in genetic programming. In Genetic Programming Theory and
Practice XI. Springer, 2013.

[63] M. Streeter and L. A. Becker. Automated discovery of numerical approx-
imation formulae via genetic programming. Genetic Programming and
Evolvable Machines, 4(3):255, 2003.

46

[64] W. Tackett. Recombination, selection, and the genetic construction of com-
puter programs. PhD thesis, University of Southern California, 1994.

[65] A. Teller and M. Veloso. Program evolution for data mining. International
Journal of Expert Systems Research and Applications, 8:213–236, 1995.

[66] M. Tomassini, L. Vanneschi, J. Cuendet, and F. Fernández. A new tech-
nique for dynamic size populations in genetic programming. In Proc. of the
Congress on Evolutionary Computation (CEC), volume 1, pages 486–493,
2004.

[67] L. Trujillo, E. Naredo, and Y. Mart́ınez. Preliminary study of bloat in
genetic programming with behavior-based search. In EVOLVE-A Bridge
between Probability, Set Oriented Numerics, and Evolutionary Computa-
tion IV, pages 293–305. Springer, 2013.

[68] L. Trujillo, S. Silva, P. Legrand, and L. Vanneschi. An empirical study of
functional complexity as an indicator of overfitting in genetic programming.
In Proc. of the European Conference on Genetic Programming (EuroGP),
pages 262–273, 2011.

[69] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. Galván-López.
Semantically-based crossover in genetic programming: application to real-
valued symbolic regression. Genetic Programming and Evolvable Machines,
12(2):91–119, 2011.

[70] L. Vanneschi, M. Castelli, and S. Silva. Measuring bloat, overfitting and
functional complexity in genetic programming. In Proc. of the Genetic and
Evolutionary Computation Conference (GECCO), pages 877–884, 2010.

[71] E. J. Vladislavleva, G. F. Smits, and D. Den Hertog. Order of nonlinearity
as a complexity measure for models generated by symbolic regression via
pareto genetic programming. IEEE Transactions on Evolutionary Compu-
tation, 13(2):333–349, 2009.

[72] P. A. Whigham and G. Dick. Implicitly controlling bloat in genetic pro-
gramming. IEEE Transactions on Evolutionary Computation, 14(2):173–
190, 2010.

[73] D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Goldman,
G. Kronberger, W. Jaśkowski, U.-M. O’Reilly, and S. Luke. Better GP
benchmarks: community survey results and proposals. Genetic Program-
ming and Evolvable Machines, 14(1):3–29, 2013.

[74] L. Wilkinson, A. Anand, and D. N. Tuan. CHIRP: a new classifier based on
composite hypercubes on iterated random projections. In Proc. of the In-
ternational Conference on Knowledge Discovery and Data Mining (KDD),
pages 6–14, 2011.

47

[75] J. Yu, J. Yu, A. A. Almal, S. M. Dhanasekaran, D. Ghosh, W. P. Worzel,
and A. M. Chinnaiyan. Feature selection and molecular classification of
cancer using genetic programming. Neoplasia, 9(4):292, 2007.

[76] M. Zhang and P. Wong. Genetic programming for medical classification:
a program simplification approach. Genetic Programming and Evolvable
Machines, 9(3):229–255, 2008.

48

A Sensitivity Analysis of HARM-GP Parame-
ters

This appendix conducts a parameter sensitivity analysis of HARM-GP. A total
of twelve configurations were tested, in addition to the reference (using the
recommended parameters), each configuration being run 30 times. Among these
configurations, α was varied four times, β two times, and γ and ρ three times.
This analysis was performed over the Bioavailability regression problem. The
fitness and size results are presented in Fig. 12 and Table 9.

By looking at each parameter individually, we can first observe that the
fitness percentage of the cutoff point (ρ) does not have much effect unless it is
set to 100% – meaning that we always use the best individual as the cutoff point.
In this case, the mean size considerably increases, and the training RMSE (Root
Mean Squared Error) improves significantly (out of graph). This performance
increase is due to an overfitting of the training set, however, and the test RMSE
remains about the same as the reference. Varying β slightly changes the size
distribution, but not significantly. Sweeping α from 1

20 to 1
5 can considerably

change the size of the produced solutions, and allow more individuals beyond
the cutoff point. Tuning γ produces slightly larger individuals with a small gain
in fitness.

Table 9: Detailed results of experiments conducted with the different bloat con-
trol methods for the Bioavailability problemBold numbers indicate per column
best results. When the best is not significantly better than others according to
a Wilcoxon signed-rank test at p < 0.01, these other best results are also set in
bold. See Table 6 for a description of columns. Note that in this specific case,
no configuration was found significantly superior on the test set.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Reference (3.9.1) 29.643 31.879 1.8 1.4 0.6
ρ = 0.95 29.956 31.608 1.7 1.4 0.5
ρ = 0.99 29.604 31.795 2.0 1.6 0.9
ρ = 1.0 27.368 32.243 8.6 7.8 13.7
β = 5 29.603 31.757 1.0 1.1 0.2
β = 20 28.801 31.567 2.4 2.5 2.3
α = 0.02 29.867 32.536 1.4 1.2 0.3
α = 0.067 29.285 31.520 2.2 1.5 0.8
α = 0.1 28.860 31.193 2.4 2.2 1.9
α = 0.2 27.611 31.850 6.5 6.7 10.5
γ = 0.15 30.483 32.008 1.3 1.0 0.1
γ = 0.35 28.905 31.210 2.2 2.0 1.4
γ = 0.45 29.201 31.809 2.2 2.3 2.3
Reference - - 44 2837242 -

49

0 20 40 60 80 100 120 140

Mean size (number of nodes)

28

30

32

34

36

38

40

42

44

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Reference

ρ .9

ρ .99

ρ .0

β

β

α

α

α

α

γ 5

γ=0.35

γ=0.45

(a) Median best training RMSE vs. average mean solution size

0 50 100 150 200 250 300 350

Mean size (number of nodes)

30

32

34

36

38

40

42

44

46

48

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Median best testing RMSE vs. average mean solution size

0 20 40 60 80 100 120 140 160

Generation

10
1

10
2

10
3

M
e
a
n
 s

iz
e

(c) Average mean solution size vs. generation

Reference

ρ
.9

ρ
.99

ρ
.0

β β α α α α γ
5

γ=
0.3
5

γ=
0.4
5

0

100

200

300

400

500

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(d) Best-of-run size boxplot

Figure 12: HARM-GP sensitivity analysis on Bioavailability. Results are for 30
independent runs. Each marker account for 10 000 evaluations.

50

B Detailed Results

This appendix presents detailed results for each of the twelve studied problems.
The next section begins with a description of our general methodology, followed
by an enumeration of per problem raw results.

B.1 General Methodology

For each problem, we proceed in the following three steps: 1) problem definition
and dataset description (when applicable); 2) short survey of relevant literature;
and 3) presentation of results in the form of tables and figures.

B.1.1 Result Tables

Most of the columns are simply the comparison metrics defined in Sec. 4.1. In
these cases, we will refer to them using the notation previously defined.

The first column of each table is a fitness metric, measured on the training
set (f̄∗x). The second column presents the same metric, but measured using an
independent testing set (ḡ∗x). For the problems where the training and testing
sets are the same, namely Artificial Ant and Even Parity, these columns contain
the fitness and the success rate, respectively. All fitness functions were designed
to be minimized6. In the case of symbolic regression, the fitness is defined by
Root Mean Squared Error (RMSE), while the classification error rate is used for
classification problems. The presented fitnesses are for best-of-run individuals,
as measured against the training set. The fitnesses for these individuals are also
computed on the testing set in order to better evaluate their true performance.
These columns present median results over all runs, except for Artificial Ant
and Even Parity where an average is preferred over a median.

The third column is the size of the best-of-run individual (s̄∗x). Note that
this is not necessarily the final mean size of the population, since the best-of-run
can be a very large individual. This is intended as an indicator of the solution
complexity. A tree of 800 nodes is far more difficult to study and analyze than a
20-node tree. From the perspective of a real-world application, this metric thus
becomes very important. To avoid too large, hardly comparable numbers, we
present relative results, the best result of each problem being used as a reference.
This reference value is shown in the last row.

The fourth column contains the accumulated size (c̄x) over the whole evolu-
tion. The accumulated size is defined by the total number of nodes processed,
thus effectively becoming a measurement of the total accumulated size since the
beginning of the run. Because the evaluation step is the most computationally
intensive part of a genetic programming evolution (at least on real-world prob-
lems), the number of nodes processed is a rough estimation of the computational

6Some bloat control methods explicitly require a maximized fitness. For these methods, a
transformation was adequately applied to the fitness value before feeding it to the algorithm,
but in order to keep results comparable, we present them using a minimized metric.

51

effort required to complete an evolution. The results are presented in a relative
manner, as for the previous column.

The fifth and last column is a measurement of the population bloat level
(b̄x) at the end of the run (see Sec. 4.3). It is also a minimized column (less is
better).

Each method is run 100 times on each problem. Therefore, this table presents
a condensed view of all runs. For all columns except the fitness-related ones,
the data were averaged. For instance, the size column presents the average
value of the best-of-run solution sizes. As for fitness, a median was preferred to
avoid the outlier effect on the average value, which was particularly apparent for
problems with RMSE metrics (since this metric is not upper-bounded). A mean
was still used on artificial problems such as Even Parity, to be consistent with
other results in the literature, and because they did not exhibit problematic
behavior.

To assert the significance of results, we used a Wilcoxon signed-rank test,
with a threshold at p = 0.01. This non-parametric test makes no assumptions
about the underlying distribution of results. The best result of each column
(e.g., the absolute minimum) is in bold. But when another method isn’t deemed
to be significantly different according to Wilcoxon signed-rank test, it is also in
bold. All non-bold results are thus significantly worse than the best one.

The first table presents all of these results using the same evaluation budget
for all methods (except for DynOpEq and FlatOpEq, see Sec. 4). However, as
shown in the effort column, not all methods require the same computational
effort. In order to be entirely fair over all methods, the second table presents
the same metrics with the equivalent computational effort of the best method
according to the test fitness. For instance, if the best method uses four times
the effort of another, then this other method also obtains four times the number
of runs (since, basically, it will require the same CPU time). Then, these runs
are grouped by four, and, for each group, only the best run according to the
training fitness is retained. This process produces a new set of 100 runs (or
meta-runs), which are used to produce the second table.

B.1.2 Result Graphs

Different graphs present different views on performance, size, and bloat level.
There are a total of eight graphs per problem, except for Artificial Ant and Even
Parity that have only six, essentially because their training and testing sets are
the same. These graphs are organized in two figures.

The first figure presents the following four graphs:

1. A plot of best fitness on the training set against mean solution size. As
for the tables, a median is used to reduce the results of 100 runs into a
single value, except for Artificial Ant and Even Parity where the average
is used instead. As for the mean solution size, it is always averaged over
the 100 runs. As this figure is generation based, different methods may
obtain different curve lengths: we stopped the curve when less than 50%

52

of the runs remain active. Finally, the markers on the curves are evenly
spaced according to the number of evaluations performed (each 10 000
evaluations), so they can be seen as a rough time line.

2. A boxplot of the best-of-run fitnesses, as measured on the training set
for each run. In this figure, as in all boxplots, the ends of the whiskers
represent the position of the lowest and highest samples within 1.5× IQR,
where IQR is the interquartile range. Outliers are not plotted.

3. A graph similar to the first, but where the best-of-run performance is
measured on the testing set instead of the training set. This graph is not
present for Artificial Ant and Even Parity, since the testing set is equal to
the training set for these problems.

4. A boxplot of the best-of-run performances, as measured on the testing set
for each run.

Note that performance metrics are always minimized. Also, the curves are often
clipped because a full representation would stretch the graph too much, while
a logarithmic scale on the size axis would render accurate comparisons difficult
(this explains the discrepancies between the final value in the line plots and the
value reported in tables and boxplots).

The second figure presents the following four graphs:

5. A plot of the mean individual size at the end of each generation. Notice
the logarithmic scale on the size axis. As the number of generations is not
the stopping criterion, different methods may generate lines of different
length, depending on how they spent their evaluation budget.

6. A boxplot of best-of-run individual size.

7. A boxplot of the final population bloat level, according to the metric of
Vanneschi et al. [70] (see Sec. 3.1).

8. A plot of the best training fitness against the accumulated size. This
graph basically shows the evolution of fitness improvement over time, the
accumulated size being roughly proportional to the elapsed time in most
problems.

53

B.2 Artificial Ant

B.2.1 Problem Description and Parameters Used

This is the classical Artificial Ant problem, on the Santa Fe trail. This is
a planning problem, where the programs control a simulated ant in order to
harvest as much food as possible (with a maximum of 89 units of food). The
primitive set includes an if-food-ahead clause, two serialization primitives (prog2
and prog3), and three terminals, namely move forward, turn left and turn right.

B.2.2 Previous Results and References

This problem was initially proposed by Koza in the early 1990s [29], and has
been widely used in GP since then. In [73], it is part of the benchmark problems
blacklist. However, no definitive argument is given about its improper use, and
alternatives all involve real-time simulation (Physical TSP, Mario gameplay) or
a complex simulated environment (TORCS). Considering that Artificial Ant is
a problem of a distinct nature (i.e., robotic/agent planning and control) from
all other problems presented in this study, we still present its results here.

B.2.3 Results

Table 10: Detailed results of experiments conducted with the different bloat
control methods for the Artificial Ant.

Method Fitness (ḡ∗x) Success Rate Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 7.020 43 1.4 1.6 0.7
Dyn. Depth Limit 7.550 43 2.3 2.6 1.8
DynOpEq 6.150 47 2.8 6.9 2.8
FlatOpEq 4.240 59 2.4 7.4 2.5
HARM-GP 5.710 53 1.0 1.0 -0.3
MutOpEq 7.530 41 3.1 3.7 3.5
Prune And Plant 9.530 35 4.6 9.4 26.4
SS+E 1.190 88 1.4 3.1 2.6
Static Depth Limit 8.750 41 3.1 5.6 7.7
Tarpeian 7.830 37 1.7 2.1 1.3
Reference - - 36 4 858 363 -

54

0 50 100 150

Mean size (number of nodes)

0

10

20

30

40

50

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best fitness vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

5

10

15

20

25

30

35

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Boxplot of the best-of-run fitness

Figure 13: Fitness results for the Artificial Ant: (a) median over 100 runs of the
best fitness achieved according to the mean size of the population, each marker
accounting for 10 000 evaluations, some markers may overlap one over another
or extend to the right of the graph; and (b) boxplot of the best-of-run individual
fitness.

55

0 20 40 60 80 100 120 140 160

Generation

10
1

10
2

10
3

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

50

100

150

200

250

300

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(b) Boxplot of the best-of-run size

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

2

4

6

8

10

12

14

B
lo

a
t

le
v
e
l

(c) Boxplot of the bloat level

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0

10

20

30

40

50

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best fitness vs. accumulated size

Figure 14: Size and bloat results for the Artificial Ant: (a) average over 100 runs
of the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best fitness achieved according to the accumulated
size. 56

Table 11: Detailed results of experiments conducted with the different bloat
control methods for the Artificial Ant, with equivalent computational effort.

Method Fitness (ḡ∗x) Success Rate Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 3.290 62 1.9 1.8 0.4
Dyn. Depth Limit 6.420 51 2.9 3.0 1.7
DynOpEq 6.150 47 3.8 8.3 2.8
FlatOpEq 4.240 59 3.3 9.0 2.5
HARM-GP 0.720 89 1.0 1.0 -0.5
MutOpEq 7.530 41 4.2 4.5 3.5
Prune And Plant 9.530 35 6.3 11.3 26.4
SS+E 1.190 88 1.9 3.8 2.6
Static Depth Limit 8.750 41 4.2 6.7 7.7
Tarpeian 5.250 53 2.2 2.4 0.9
Reference - - 26 4 020 047 -

57

B.3 Even Parity 8

B.3.1 Problem Description and Parameters Used

This is the classic Even Parity 8 problem, where the program has to find the
parity value of a given number of bits. In our case, we use an 8 bits parity,
which translates into a total number of samples of 256. The primitive set was
composed of {AND,OR,XOR,NOT} and the terminals 0 and 1. The fitness is
defined by the number of wrong parity bits over the whole training set.

B.3.2 Previous Results and References

This problem has been proposed by Koza in the early 1990s [29]. While it does
not offer a serious challenge in terms of performance, it remains an interesting
comparison problem considering the lack of good and straightforward Boolean
benchmarks in [73]7, especially considering that we are not only interested by
the final fitness value, but also by the solution size and the computational effort
required to achieve it.

B.3.3 Results

Table 12: Detailed results of experiments conducted with the different bloat
control methods for Even Parity 8.

Method Fitness (ḡ∗x) Success Rate Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 21.610 55 2.2 1.9 6.4
Dyn. Depth Limit 10.220 63 2.8 3.3 10.6
DynOpEq 2.640 90 1.5 3.2 4.0
FlatOpEq 3.520 90 1.5 3.3 5.1
HARM-GP 6.400 78 1.0 1.0 3.7
MutOpEq 7.840 77 1.5 1.6 4.9
Prune And Plant 25.960 40 5.8 11.9 94.4
SS+E 3.600 85 3.7 4.4 14.9
Static Depth Limit 13.680 55 3.7 5.9 21.9
Tarpeian 9.530 66 2.6 2.6 5.2
Reference - - 30 4 454 749 -

7For instance, this paper proposed a multiple output parallel multiplier. While interesting,
this problem was created for Cartesian GP, and leads to a series of design decision which can
have a significant affect on the final performance, the most important one being how to create
a tree with multiple outputs using standard GP.

58

0 50 100 150

Mean size (number of nodes)

0

20

40

60

80

100

120

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best fitness vs. number of fitness evaluations

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

20

40

60

80

100

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run fitness boxplot

Figure 15: Fitness results for the Even Parity 8: (a) median over 100 runs of the
best fitness achieved according to the mean size of the population, each marker
accounting for 10 000 evaluations, some markers may overlap one over another
or extend to the right of the graph; and (b) boxplot of the best-of-run individual
fitness.

59

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

50

100

150

200

250

300

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

5

10

15

20

25

30

35

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0

20

40

60

80

100

120

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best fitness vs. accumulated size

Figure 16: Size and bloat results for Even Parity 8: (a) average over 100 runs
of the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best fitness achieved according to the accumulated
size. 60

Table 13: Detailed results of experiments conducted with the different bloat
control methods for Even Parity 8, with equivalent computational effort.

Method Fitness (ḡ∗x) Success Rate Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 11.670 68 2.3 2.0 6.2
Dyn. Depth Limit 10.220 63 3.1 3.3 10.6
DynOpEq 2.640 90 1.7 3.2 4.0
FlatOpEq 3.520 90 1.6 3.3 5.1
HARM-GP 0.160 99 1.0 1.0 3.5
MutOpEq 7.840 77 1.6 1.6 4.9
Prune And Plant 25.960 40 6.3 11.9 94.4
SS+E 3.600 85 4.1 4.4 14.9
Static Depth Limit 13.680 55 4.1 5.9 21.9
Tarpeian 9.340 69 2.6 2.5 5.1
Reference - - 27 4 457 008 -

61

B.4 Symbolic Regression: Keijzer-6

B.4.1 Problem Description and Parameters Used

This problem consists in a one variable symbolic regression over the following
equation (which is actually the harmonic series):

f(x) =

x∑
i=1

1

i
.

It uses the first 50 natural numbers (except 0) as a training set, and {1, 2, ...120}
as a test set in order to emphasize extrapolation. The primitive set used is a
standard symbolic regression set: {+,−, ∗, /,neg, cos, sin, ln}, with the division
and the natural logarithmic operator protected. The initialization is ramped
half-and-half in the [2 − 5] range for maximum depth. Reported errors are
RMSE.

B.4.2 Previous Results and References

The problem has originally been proposed by Keijzer in [25] to show the poten-
tial of linear scaling in GP. It is part of the recommended GP benchmarks in
[73] and was also used as a benchmark in [63], with an error on the training set
of about 5× 10−4 at best (no results were given on a test set).

B.4.3 Results

Table 14: Detailed results of experiments conducted with the different bloat
control methods for Keijzer-6.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.032 0.056 1.0 1.1 3.9
Dyn. Depth Limit 0.009 0.035 24.1 18.6 124.1
DynOpEq 0.004 0.016 20.5 29.6 109.3
FlatOpEq 0.004 0.015 9.2 11.5 38.3
HARM-GP 0.008 0.021 1.1 1.0 3.2
MutOpEq 0.008 0.020 4.2 3.5 16.7
Prune And Plant 0.035 0.060 12.9 10.9 59.8
SS+E 0.004 0.011 5.2 5.4 45.9
Static Depth Limit 0.019 0.049 2.0 2.5 9.3
Tarpeian 0.024 0.055 1.8 2.0 8.2
Reference - - 69 5 439 003 -

62

0 50 100 150

Mean size (number of nodes)

0.00

0.02

0.04

0.06

0.08

0.10

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best RMSE on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Boxplot of the best-of-run RMSE on the training set

0 50 100 150

Mean size (number of nodes)

0.02

0.04

0.06

0.08

0.10

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best RMSE on the testing set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.00

0.02

0.04

0.06

0.08

0.10

F
in

a
l
b
e
s
t

in
d
.
e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Boxplot of the best-of-run RMSE on the testing set

Figure 17: Performance and size results for Keijzer-6, over 100 runs: (a) and (c)
plot the median of the RMSE of the best individual found so far (according to the
training set) against the corresponding average mean solution size, respectively
measured on the training set and the testing set, with each marker accounting
for 10 000 evaluations, having some markers that may overlap one over another
or extend to the right of the graph; (b) and (d) are boxplots of the RMSE of
the best-of-run individual (according to the training set), respectively measured
against the training set and the testing set.

63

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

200

400

600

800

1000

F
in

a
l
b
e
s
t

in
d
.

s
iz

e
 (

#
 n

o
d
e
s
)

(b) Boxplot of the best-of-run size

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

20

40

60

80

100

B
lo

a
t

le
v
e
l

(c) Boxplot of the bloat level

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0.00

0.02

0.04

0.06

0.08

0.10

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best RMSE on the training set vs. accumulated size

Figure 18: Size and bloat results for Keijzer-6: (a) average over 100 runs of
the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best RMSE on the training set achieved according
to the accumulated size. 64

Table 15: Detailed results of experiments conducted with the different bloat
control methods for Keijzer-6, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.007 0.016 1.0 1.0 2.7
Dyn. Depth Limit 0.009 0.035 33.1 20.7 124.1
DynOpEq 0.004 0.016 28.1 33.0 109.3
FlatOpEq 0.004 0.015 12.7 12.8 38.3
HARM-GP 0.002 0.007 1.6 1.2 3.5
MutOpEq 0.008 0.020 5.7 3.9 16.7
Prune And Plant 0.035 0.060 17.7 12.1 59.8
SS+E 0.004 0.011 7.1 6.0 45.9
Static Depth Limit 0.007 0.016 2.7 2.7 9.0
Tarpeian 0.007 0.016 2.0 1.9 6.7
Reference - - 50 4 887 484 -

65

B.5 Symbolic Regression: Nguyen-7

B.5.1 Problem Description and Parameters Used

This problem involves a one variable symbolic regression over the equation:

f(x) = ln(x+ 1) + ln(x2 + 1) (9)

It uses 20 training points from a uniform distribution over the range [0, 2].
The test set was not mentioned in previous work, but in this paper we use 1000
points uniformly distributed in the same range. The primitive set used is a
standard symbolic regression set: {+,−, ∗, /,neg, cos, sin, ln}, with the division
and the natural logarithmic operator protected. The initialization is conducted
with a ramped half-and-half method, with a [2 − 5] range for the maximum
initial depth. The reported errors are the computed RMSE.

B.5.2 Previous Results and References

This problem was proposed and used by Nguyen et al. in [69], where they
report a final sum of errors of about 0.13, which translates to an average error
of 6.5×10−3 on the training set. While the aim of [69] was to show the benefits
of a semantically aware crossover, the problem can still be of some use in other
areas of GP, and is among the GP benchmarks recommended in [73].

B.5.3 Results

Table 16: Detailed results of experiments conducted with the different bloat
control methods for Nguyen-7.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.010 0.014 1.0 1.0 0.7
Dyn. Depth Limit 0.008 0.013 23.3 12.7 2.9
DynOpEq 0.001 0.005 30.1 32.9 51.7
FlatOpEq 0.002 0.003 13.2 13.0 4.9
HARM-GP 0.003 0.006 2.8 2.2 3.2
MutOpEq 0.003 0.005 7.8 5.6 8.2
Prune And Plant 0.003 0.010 25.8 15.8 32.2
SS+E 0.000 0.001 10.2 8.4 27.9
Static Depth Limit 0.005 0.009 2.7 3.2 3.8
Tarpeian 0.007 0.011 1.9 1.7 1.7
Reference - - 24 2 342 961 -

66

0 20 40 60 80 100 120 140

Mean size (number of nodes)

0.00

0.02

0.04

0.06

0.08

0.10

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best RMSE on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.00

0.01

0.02

0.03

0.04

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run training RMSE boxplot

0 20 40 60 80 100 120 140

Mean size (number of nodes)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best RMSE on the test set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.00

0.01

0.02

0.03

0.04

0.05

0.06

F
in

a
l
b
e
s
t

in
d
.
e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best-of-run test RMSE boxplot

Figure 19: Performance and size results for Nguyen-7, over 100 runs: (a) and (c)
plot the median of the RMSE of the best individual found so far (according to the
training set) against the corresponding average mean solution size, respectively
measured on the training set and the testing set, with each marker accounting
for 10 000 evaluations, having some markers that may overlap one over another
or extend to the right of the graph; (b) and (d) are boxplots of the RMSE of
the best-of-run individual (according to the training set), respectively measured
against the training set and the testing set.

67

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

100

200

300

400

500

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

10

20

30

40

50

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0 1000000 2000000 3000000 4000000

Accumulated size (number of nodes processed)

0.00

0.02

0.04

0.06

0.08

0.10

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best RMSE on the training set vs. accumulated size

Figure 20: Size and bloat results for Nguyen-7: (a) average over 100 runs of
the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best RMSE on the training set achieved according
to the accumulated size. 68

Table 17: Detailed results of experiments conducted with the different bloat
control methods for Nguyen-7, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.002 0.003 1.0 1.0 1.3
Dyn. Depth Limit 0.008 0.013 17.2 8.9 2.9
DynOpEq 0.001 0.005 22.3 23.2 51.7
FlatOpEq 0.002 0.003 9.8 9.1 4.9
HARM-GP 0.001 0.002 2.0 1.6 3.4
MutOpEq 0.003 0.005 5.8 3.9 8.2
Prune And Plant 0.003 0.010 19.1 11.1 32.2
SS+E 0.000 0.001 7.5 5.9 27.9
Static Depth Limit 0.002 0.003 2.0 2.4 4.3
Tarpeian 0.003 0.004 1.7 1.5 3.0
Reference - - 33 3 331 869 -

69

B.6 Symbolic Regression: Pagie-1

B.6.1 Problem Description and Parameters Used

This problem consists in a two-variable symbolic regression over the equation:

f(x, y) =
1

1 + x−4
+

1

1 + y−4
(10)

It uses 25 training points, evenly distributed over the range [−5, 5] on each
dimension. The test set was not mentioned in previous work. We used 50 points
uniformly distributed in the same range. The primitive set used is a standard
symbolic regression set: {+,−, ∗, /,neg, cos, sin,
ln}, with the division and the natural logarithmic operator protected, plus an
ephemeral constant in the range [−1, 1]. The initialization is carried out with
a ramped half-and-half method, with a [2 − 5] range for the maximum initial
depth. The reported errors are the RMSE.

B.6.2 Previous Results and References

Introduced by Pagie and Hogeweg in [43], this problem has been used in the
literature on different aspects of GP. In [62], Spector and Helmuth reported a
mean error of 0.32 on the test set for standard GP, over 100 runs. This problem
is also part of the recommended GP benchmarks listed in [73].

B.6.3 Results

Table 18: Detailed results of experiments conducted with the different bloat
control methods for Pagie-1.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.064 0.252 1.0 1.0 0.2
Dyn. Depth Limit 0.051 0.236 23.6 14.8 59.1
DynOpEq 0.040 0.207 24.6 28.7 68.4
FlatOpEq 0.047 0.220 5.0 6.6 3.1
HARM-GP 0.047 0.219 2.2 1.9 3.6
MutOpEq 0.050 0.235 7.8 5.5 11.4
Prune And Plant 0.060 0.239 16.4 10.6 35.5
SS+E 0.048 0.205 7.7 6.5 29.8
Static Depth Limit 0.042 0.217 2.9 3.3 6.4
Tarpeian 0.051 0.234 2.0 1.9 4.2
Reference - - 30 2 741 243 -

70

0 20 40 60 80 100 120 140

Mean size (number of nodes)

0.0

0.1

0.2

0.3

0.4

0.5

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best RMSE on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run training RMSE boxplot

0 20 40 60 80 100 120 140

Mean size (number of nodes)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best RMSE on the test set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
in

a
l
b
e
s
t

in
d
.
e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best-of-run test RMSE boxplot

Figure 21: Performance and size results for Pagie-1, over 100 runs: (a) and (c)
plot the median of the RMSE of the best individual found so far (according to the
training set) against the corresponding average mean solution size, respectively
measured on the training set and the testing set, with each marker accounting
for 10 000 evaluations, having some markers that may overlap one over another
or extend to the right of the graph; (b) and (d) are boxplots of the RMSE of
the best-of-run individual (according to the training set), respectively measured
against the training set and the testing set.

71

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

100

200

300

400

500

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

10

20

30

40

50

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0.0

0.1

0.2

0.3

0.4

0.5

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best RMSE on the training set vs. accumulated size

Figure 22: Size and bloat results for Pagie-1: (a) average over 100 runs of
the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best RMSE on the training set achieved according
to the accumulated size. 72

Table 19: Detailed results of experiments conducted with the different bloat
control methods for Pagie-1, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.045 0.217 1.0 1.0 2.5
Dyn. Depth Limit 0.051 0.236 15.5 9.7 59.1
DynOpEq 0.040 0.207 16.1 18.8 68.4
FlatOpEq 0.047 0.220 3.3 4.3 3.1
HARM-GP 0.041 0.216 1.5 1.3 3.7
MutOpEq 0.050 0.235 5.1 3.6 11.4
Prune And Plant 0.060 0.239 10.8 7.0 35.5
SS+E 0.048 0.205 5.0 4.3 29.8
Static Depth Limit 0.033 0.209 2.2 2.4 7.1
Tarpeian 0.042 0.211 1.5 1.5 4.4
Reference - - 46 4 182 382 -

73

B.7 Symbolic Regression: Vladislavleva-4

B.7.1 Problem Description and Parameters Used

This problem involves a five variables symbolic regression over the equation:

f(x1, x2, . . . , x5)
10

5 +
∑5
i=1(xi − 3)2

(11)

It uses 1024 training points from a uniform distribution over the range
[0.05, 6.05], and 500 test points, over the range [−0.25, 6.35]. The primitive
set used is a standard symbolic regression set: {+,−, ∗, /,neg, cos, sin, ln}, with
the division and the natural logarithmic operator protected, plus an ephemeral
constant in the range [−1, 1]. The initialization is performed with a ramped
half-and-half method, with a [2− 5] range for the maximum initial depth. The
reported errors are the computed RMSE.

B.7.2 Previous Results and References

This problem was introduced by Vladislavleva et al. in [71] as a good problem to
tackle generalization capabilities of GP. They report a training RMSE of 0.173
and a test RMSE of about 0.277. This problem is part of the recommended GP
benchmarks in [73].

B.7.3 Results

Table 20: Detailed results of experiments conducted with the different bloat
control methods for Vladislavleva-4.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.194 0.199 1.0 1.0 -0.7
Dyn. Depth Limit 0.165 0.180 39.2 30.0 58.2
DynOpEq 0.116 0.149 56.7 87.0 113.3
FlatOpEq 0.118 0.150 23.1 34.1 40.8
HARM-GP 0.137 0.165 3.3 3.2 4.1
MutOpEq 0.138 0.163 23.0 19.3 42.2
Prune And Plant 0.194 0.200 10.8 7.8 -0.8
SS+E 0.156 0.171 12.8 14.0 35.4
Static Depth Limit 0.133 0.162 4.7 6.2 9.6
Tarpeian 0.174 0.192 2.7 3.4 2.9
Reference - - 22 1 565 337 -

74

0 50 100 150

Mean size (number of nodes)

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best RMSE on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run training RMSE boxplot

0 50 100 150

Mean size (number of nodes)

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best RMSE on the test set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

F
in

a
l
b
e
s
t

in
d
.
e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best-of-run test RMSE boxplot

Figure 23: Performance and size results for Vladislavleva-4, over 100 runs: (a)
and (c) plot the median of the RMSE of the best individual found so far (accord-
ing to the training set) against the corresponding average mean solution size,
respectively measured on the training set and the testing set, with each marker
accounting for 10 000 evaluations, having some markers that may overlap one
over another or extend to the right of the graph; (b) and (d) are boxplots of the
RMSE of the best-of-run individual (according to the training set), respectively
measured against the training set and the testing set.

75

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

200

400

600

800

1000

F
in

a
l
b
e
s
t

in
d
.

s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

20

40

60

80

100

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Accumulated size (number of nodes processed)

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best RMSE on the training set vs. accumulated size

Figure 24: Size and bloat results for Vladislavleva-4: (a) average over 100 runs
of the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best RMSE on the training set achieved according
to the accumulated size. 76

Table 21: Detailed results of experiments conducted with the different bloat
control methods for Vladislavleva-4, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.119 0.154 1.0 1.0 5.1
Dyn. Depth Limit 0.159 0.178 12.2 8.3 61.7
DynOpEq 0.116 0.149 16.8 22.8 113.3
FlatOpEq 0.118 0.150 6.8 9.0 40.8
HARM-GP 0.115 0.150 1.3 1.0 4.8
MutOpEq 0.129 0.155 6.1 5.1 40.7
Prune And Plant 0.148 0.170 7.5 4.6 34.5
SS+E 0.147 0.165 3.6 3.6 34.3
Static Depth Limit 0.118 0.152 2.0 2.2 12.7
Tarpeian 0.117 0.152 1.7 1.8 12.1
Reference - - 75 5 963 511 -

77

B.8 Symbolic Regression: Bioavailability

B.8.1 Problem Description and Parameters Used

This problem is a real-world symbolic regression, with the aim of estimating the
bioavailability of chemicals based on some chemical properties. The dataset it-
self contains 718 samples, each with 241 properties, making it a high-dimension
problem with a relatively small training set. The reported errors are the com-
puted RMSE. For each run, 30% of the data is kept as a test set, while the
remaining 70% is used to train the individuals. We took care for the data
separation to be the same across all methods (e.g., the run # 46 of all meth-
ods uses the same training set). The primitive set used is a reduced sym-
bolic regression set: {+,−, ∗, /}, with the division operator protected, plus an
ephemeral constant in the range [−1, 1]. The initialization is conducted with
a ramped half-and-half method, with a [2 − 5] range for the maximum initial
depth. The dataset is publicly available at http://personal.disco.unimib.

it/Vanneschi/bioavailability.txt.

B.8.2 Previous Results and References

Initially proposed by Silva and Vanneschi in [58], this problem has been used
in the analysis of some bloat control methods. The author report a RMSE of
approximately 29 and 34, respectively on the training and the test set. In [62],
median errors of about 38 (training) and 42 (test) are reported over 200 runs.
This problem is proposed as a GP benchmark in [39].

B.8.3 Results

Table 22: Detailed results of experiments conducted with the different bloat
control methods for Bioavailability.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 27.874 33.903 1.6 2.0 6.0
Dyn. Depth Limit 27.076 36.457 31.8 27.7 143.5
DynOpEq 24.581 46.796 34.9 58.9 148.9
FlatOpEq 27.829 33.019 3.7 4.7 5.0
HARM-GP 28.691 31.511 1.0 1.0 1.8
MutOpEq 27.273 35.539 7.6 6.6 23.4
Prune And Plant 28.333 36.449 14.9 10.1 41.7
SS+E 28.707 31.332 7.8 6.1 44.7
Static Depth Limit 25.690 33.982 4.3 5.8 20.8
Tarpeian 26.305 34.847 3.3 4.2 26.8
Reference - - 100 6 280 874 -

78

http://personal.disco.unimib.it/Vanneschi/bioavailability.txt
http://personal.disco.unimib.it/Vanneschi/bioavailability.txt

0 50 100 150 200

Mean size (number of nodes)

25

30

35

40

45

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best RMSE on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

20

22

24

26

28

30

32

34

36

38

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run training RMSE boxplot

0 50 100 150 200

Mean size (number of nodes)

30

32

34

36

38

40

42

44

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best RMSE on the test set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

20

40

60

80

100

120

140

160

180

F
in

a
l
b
e
s
t

in
d
.

e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best-of-run test RMSE boxplot

Figure 25: Performance and size results for Bioavailability, over 100 runs: (a)
and (c) plot the median of the RMSE of the best individual found so far (accord-
ing to the training set) against the corresponding average mean solution size,
respectively measured on the training set and the testing set, with each marker
accounting for 10 000 evaluations, having some markers that may overlap one
over another or extend to the right of the graph; (b) and (d) are boxplots of the
RMSE of the best-of-run individual (according to the training set), respectively
measured against the training set and the testing set.

79

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

200

400

600

800

1000

F
in

a
l
b
e
s
t

in
d
.

s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

20

40

60

80

100

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Accumulated size (number of nodes processed)

25

30

35

40

45

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best RMSE on the training set vs. accumulated size

Figure 26: Size and bloat results for Bioavailability: (a) average over 100 runs
of the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best RMSE on the training set achieved according
to the accumulated size. 80

Table 23: Detailed results of experiments conducted with the different bloat
control methods for Bioavailability, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 26.887 32.911 1.5 1.9 6.7
Dyn. Depth Limit 27.076 36.457 29.6 25.7 143.5
DynOpEq 24.581 46.796 32.5 54.8 148.9
FlatOpEq 27.595 33.406 4.0 4.8 6.5
HARM-GP 27.354 32.009 1.0 1.0 2.1
MutOpEq 27.273 35.539 7.1 6.1 23.4
Prune And Plant 28.333 36.449 13.9 9.4 41.7
SS+E 28.707 31.332 7.3 5.7 44.7
Static Depth Limit 25.459 34.707 3.9 5.4 20.8
Tarpeian 25.828 33.881 3.0 3.9 25.4
Reference - - 107 6 758 465 -

81

B.9 Symbolic Regression: Dow Chemical

B.9.1 Problem Description and Parameters Used

Dow Chemical is a symbolic regression problem, with a dataset which is already
divided into training/test set containing 747 training samples and 319 test sam-
ples. It has 57 features. We applied a whitening transform (i.e., transform data
to follow a zero mean, zero covariance, and unitary variance multivariate normal
distribution, ND(0, I)) over the dataset, computed on the training set. However,
the RMSE values reported are on the original data. The primitive set used is
a reduced symbolic regression set: {+,−, ∗, /}, with the division operator pro-
tected, plus an ephemeral constant in the range [−1, 1]. The initialization is
carried out with a ramped half-and-half method, with a [2 − 5] range for the
maximum initial depth. The dataset is available online at http://casnew.iti.
upv.es/index.php/evocompetitions/105-symregcompetition.

B.9.2 Previous Results and References

This problem was the subject of the symbolic regression competition of the
EvoCompetitions event at the 2010 EvoStar conference. It has been used in
several studies, such as [28], where the GP performance combined to some other
heuristics was described as a “robust stacked empirical model”. It is also one of
the recommended benchmarks in [73].

B.9.3 Results

Table 24: Detailed results of experiments conducted with the different bloat
control methods for Dow Chemical.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.221 0.234 3.9 1.0 -0.6
Dyn. Depth Limit 0.182 0.257 185.4 27.7 63.4
DynOpEq 0.159 0.228 198.6 52.6 65.8
FlatOpEq 0.268 0.271 1.0 17.9 0.6
HARM-GP 0.181 0.201 7.9 1.7 1.0
MutOpEq 0.175 0.195 59.5 10.2 15.9
Prune And Plant 0.284 0.274 11.5 1.7 -0.8
SS+E 0.180 0.193 38.1 5.6 18.7
Static Depth Limit 0.164 0.231 19.7 5.3 5.6
Tarpeian 0.184 0.222 12.3 2.9 2.7
Reference - - 7 2 199 072 -

82

http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition
http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition

0 50 100 150

Mean size (number of nodes)

0.15

0.20

0.25

0.30

0.35

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best RMSE on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.10

0.15

0.20

0.25

0.30

0.35

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run training RMSE boxplot

0 50 100 150

Mean size (number of nodes)

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best RMSE on the test set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.1

0.2

0.3

0.4

0.5

F
in

a
l
b
e
s
t

in
d
.

e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best-of-run test RMSE boxplot

Figure 27: Performance and size results for DowChemical, over 100 runs: (a)
and (c) plot the median of the RMSE of the best individual found so far (accord-
ing to the training set) against the corresponding average mean solution size,
respectively measured on the training set and the testing set, with each marker
accounting for 10 000 evaluations, having some markers that may overlap one
over another or extend to the right of the graph; (b) and (d) are boxplots of the
RMSE of the best-of-run individual (according to the training set), respectively
measured against the training set and the testing set.

83

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

100

200

300

400

500

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

5

10

15

20

25

30

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0.15

0.20

0.25

0.30

0.35

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best RMSE on the training set vs. accumulated size

Figure 28: Size and bloat results for DowChemical: (a) average over 100 runs
of the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best RMSE on the training set achieved according
to the accumulated size. 84

Table 25: Detailed results of experiments conducted with the different bloat
control methods for Dow Chemical, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.154 0.166 10.6 1.2 2.2
Dyn. Depth Limit 0.182 0.257 185.4 13.4 63.4
DynOpEq 0.159 0.228 198.6 25.5 65.8
FlatOpEq 0.268 0.271 1.0 8.7 0.6
HARM-GP 0.160 0.166 10.2 1.0 1.2
MutOpEq 0.175 0.195 59.5 4.9 15.9
Prune And Plant 0.244 0.247 29.3 1.7 -0.7
SS+E 0.180 0.193 38.1 2.7 18.7
Static Depth Limit 0.158 0.227 20.7 2.7 6.4
Tarpeian 0.155 0.184 14.5 1.7 4.1
Reference - - 7 4 535 017 -

85

B.10 Classification: Adult Dataset

B.10.1 Problem Description and Parameters Used

This is a classification problems based on a U.S. census. The aim of the prob-
lem is to determine if the average income of a person is greater or less than 50
k$, therefore making it a 2-class problem. The dataset is available on the UCI
database, but we used a slightly modified version, with the continuous features
discretized, from the libsvm repository (namely the a9a dataset from http:

//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/). In this form, the
dataset has 123 features. We used the following set of primitives: {+,−, ∗, /, iflessthan},
with the division operator protected, plus an ephemeral constant in the range
[−1, 1]. The fitness corresponds to the classification error rate on the training
set.

B.10.2 Previous Results and References

This problem has often been used in machine learning papers, and is part of
the so-called CHIRP suite, which is one of the 20 classification problems used
to assert the performance of 50 classifiers in [74], where the reported error rate
for the best algorithm was about 15%. This is also the error rate reported for
a SVM in [45]. As another reference, Madden reported an error of about 13%
for the best classification methods presented in [38]. Note that this dataset
is among the recommended problems in [73], being one of the CHIRP suite
datasets.

B.10.3 Results

Table 26: Detailed results of experiments conducted with the different bloat
control methods for Adult.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.158 0.158 1.9 2.3 2.9
Dyn. Depth Limit 0.164 0.164 20.8 17.0 40.0
DynOpEq 0.159 0.160 26.5 41.1 52.4
FlatOpEq 0.157 0.158 12.3 19.4 13.6
HARM-GP 0.161 0.160 1.0 1.0 0.2
MutOpEq 0.159 0.159 7.2 8.3 14.1
Prune And Plant 0.162 0.162 17.0 11.1 36.2
SS+E 0.164 0.162 5.8 6.4 18.0
Static Depth Limit 0.156 0.158 6.6 7.9 13.8
Tarpeian 0.156 0.158 4.0 4.5 7.2
Reference - - 65 4 630 486 -

86

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

0 50 100 150 200

Mean size (number of nodes)

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best classification error on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.150

0.155

0.160

0.165

0.170

0.175

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Boxplot of the best-of-run classification error on the training set

0 50 100 150 200

Mean size (number of nodes)

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best classification error on the testing set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.150

0.155

0.160

0.165

0.170

0.175

0.180

F
in

a
l
b
e
s
t

in
d
.

e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Boxplot of the best-of-run classification error on the testing set

Figure 29: Performance and size results for Adult, over 100 runs: (a) and (c)
plot the median of the classification error of the best individual found so far
(according to the training set), against the corresponding average mean solution
sizes, respectively measured on the training set and the testing set, with each
marker accounting for 10 000 evaluations, having some markers that may overlap
one over another or extend to the right of the graph; (b) and (d) are boxplots of
the classification error of the best-of-run individual (according to the training
set), respectively measured against the training set and the testing set.

87

0 20 40 60 80 100 120 140 160

Generation

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

100

200

300

400

500

600

700

800

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(b) Boxplot of the best-of-run size

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

10

20

30

40

50

B
lo

a
t

le
v
e
l

(c) Boxplot of the bloat level

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best classification error on the training set vs. accumulated size

Figure 30: Size and bloat results for Adult: (a) average over 100 runs of the mean
individual size over the generations; (b) boxplot of the best-of-run individual
size; (c) boxplot of the bloat level at the last generation; and (d) median over
100 runs of the best classification error on the training set achieved according
to the accumulated size. 88

Table 27: Detailed results of experiments conducted with the different bloat
control methods for Adult, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.157 0.157 2.0 2.4 3.2
Dyn. Depth Limit 0.164 0.164 19.7 16.4 40.0
DynOpEq 0.159 0.160 25.0 39.9 52.4
FlatOpEq 0.157 0.158 11.7 18.8 13.6
HARM-GP 0.160 0.159 1.0 1.0 0.3
MutOpEq 0.159 0.159 6.8 8.1 14.1
Prune And Plant 0.162 0.162 16.0 10.8 36.2
SS+E 0.164 0.162 5.4 6.2 18.0
Static Depth Limit 0.156 0.158 6.2 7.6 13.8
Tarpeian 0.156 0.158 3.7 4.4 7.2
Reference - - 69 4 772 445 -

89

B.11 Classification: Magic Gamma Telescope Dataset

B.11.1 Problem Description and Parameters Used

This is a classification problem, where the classifier aims to differentiate a sig-
nal representing some interesting phenomena for astrophysicists from the back-
ground noise. The classifier is fed an unbalanced dataset, each sample consisting
of ten features. We used the following set of primitives: {+,−, ∗, /, iflessthan},
with the division operator protected, plus an ephemeral constant in the range
[−1, 1]. The data is whitened beforehand, and the error rate was chosen as
a fitness metric. The dataset can be downloaded from the UCI database at
http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope.

B.11.2 Previous Results and References

This problem is a difficult one, due to its unbalanced dataset, and the fact that
its definition renders a false positive (qualifying background noise as a signal)
significantly worse than a false negative (missing a signal). However, we can
still use the classification error rate using uniform per-class loss to compare the
performance of many classifiers. Bock et al. [10] reported an error rate of about
12% in the test set.

B.11.3 Results

Table 28: Detailed results of experiments conducted with the different bloat
control methods for Magic Telescope.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.149 0.159 1.8 2.1 4.0
Dyn. Depth Limit 0.144 0.161 22.3 20.0 55.9
DynOpEq 0.137 0.155 19.4 40.2 52.4
FlatOpEq 0.141 0.153 7.8 15.3 14.7
HARM-GP 0.153 0.160 1.0 1.0 0.3
MutOpEq 0.147 0.163 7.2 8.8 16.2
Prune And Plant 0.156 0.167 14.9 13.3 46.8
SS+E 0.153 0.159 7.7 7.4 26.9
Static Depth Limit 0.139 0.157 5.8 7.7 15.5
Tarpeian 0.140 0.158 3.3 4.4 7.8
Reference - - 78 4 858 638 -

90

http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope

0 50 100 150 200

Mean size (number of nodes)

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best classification error on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run training classification error boxplot

0 50 100 150 200

Mean size (number of nodes)

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best classification error on the test set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

F
in

a
l
b
e
s
t

in
d
.
e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best-of-run test classification error boxplot

Figure 31: Performance and size results for Magic Telescope, over 100 runs: (a)
and (c) plot the median of the classification error of the best individual found
so far (according to the training set), against the corresponding average mean
solution sizes, respectively measured on the training set and the testing set, with
each marker accounting for 10 000 evaluations, having some markers that may
overlap one over another or extend to the right of the graph; (b) and (d) are
boxplots of the classification error of the best-of-run individual (according to
the training set), respectively measured against the training set and the testing
set.

91

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

200

400

600

800

1000

F
in

a
l
b
e
s
t

in
d
.

s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

10

20

30

40

50

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best classification error on the training set vs. accumulated size

Figure 32: Size and bloat results for Magic Telescope: (a) average over 100 runs
of the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best classification error on the training set achieved
according to the accumulated size. 92

Table 29: Detailed results of experiments conducted with the different bloat
control methods for Magic Telescope, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.136 0.151 2.3 2.7 5.0
Dyn. Depth Limit 0.144 0.161 22.7 19.2 55.9
DynOpEq 0.137 0.155 19.7 38.6 52.4
FlatOpEq 0.141 0.153 7.9 14.6 14.7
HARM-GP 0.141 0.154 1.0 1.0 0.4
MutOpEq 0.143 0.160 7.1 8.2 15.0
Prune And Plant 0.153 0.165 15.3 12.7 50.8
SS+E 0.149 0.157 7.7 7.3 26.2
Static Depth Limit 0.134 0.155 5.8 7.5 14.7
Tarpeian 0.134 0.151 4.0 4.7 9.0
Reference - - 77 5 065 981 -

93

B.12 Classification: Spambase

B.12.1 Problem Description and Parameters Used

This classification problem involves a spam filter. This dataset contains 4601
samples, with 57 features each. The task is to classify each of these samples
(each sample containing the information concerning one email) into the spam or
no-spam. We used the following set of primitives: {+,−, ∗, /, iflessthan}, with
the division operator protected, plus an ephemeral constant in the range [−1, 1].
We randomly partitioned the dataset, retaining 30% as a test set, and using the
remainder to train the classifier. Again, the classification error rate in training
was chosen as a fitness function. The dataset can be downloaded from the UCI
database at http://archive.ics.uci.edu/ml/datasets/Spambase.

B.12.2 Previous Results and References

This problem has been widely explored. Lee et al. [34] have conducted a review
of the relevant literature, and found classification error rates on the test set
varying between 5% and 12%, sometimes with specific parameter optimization.

B.12.3 Results

Table 30: Detailed results of experiments conducted with the different bloat
control methods for Spambase.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.064 0.077 1.5 2.6 3.2
Dyn. Depth Limit 0.068 0.085 12.5 16.0 37.3
DynOpEq 0.058 0.081 11.2 31.3 27.5
FlatOpEq 0.063 0.080 5.5 12.1 10.4
HARM-GP 0.071 0.080 1.0 1.0 0.3
MutOpEq 0.069 0.087 4.8 7.3 12.6
Prune And Plant 0.072 0.085 16.0 19.1 45.1
SS+E 0.068 0.080 12.0 11.0 41.2
Static Depth Limit 0.059 0.079 3.7 6.6 10.8
Tarpeian 0.064 0.080 2.1 3.6 5.2
Reference - - 98 5 210 493 -

94

http://archive.ics.uci.edu/ml/datasets/Spambase

0 50 100 150

Mean size (number of nodes)

0.05

0.10

0.15

0.20

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best classification error on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run training classification error boxplot

0 50 100 150

Mean size (number of nodes)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best classification error on the test set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

F
in

a
l
b
e
s
t

in
d
.
e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best-of-run test classification error boxplot

Figure 33: Performance and size results for Spambase, over 100 runs: (a) and
(c) plot the median of the classification error of the best individual found so far
(according to the training set), against the corresponding average mean solution
sizes, respectively measured on the training set and the testing set, with each
marker accounting for 10 000 evaluations, having some markers that may overlap
one over another or extend to the right of the graph; (b) and (d) are boxplots of
the classification error of the best-of-run individual (according to the training
set), respectively measured against the training set and the testing set.

95

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

200

400

600

800

1000

F
in

a
l
b
e
s
t

in
d
.

s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

10

20

30

40

50

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0.05

0.10

0.15

0.20

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best classification error on the training set vs. accumulated size

Figure 34: Size and bloat results for Spambase: (a) average over 100 runs of
the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best classification error on the training set achieved
according to the accumulated size.

96

Table 31: Detailed results of experiments conducted with the different bloat
control methods for Spambase, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.064 0.077 1.6 2.5 3.2
Dyn. Depth Limit 0.068 0.085 13.1 15.5 37.3
DynOpEq 0.058 0.081 11.8 30.3 27.5
FlatOpEq 0.063 0.080 5.8 11.8 10.4
HARM-GP 0.068 0.081 1.0 1.0 0.3
MutOpEq 0.069 0.087 5.0 7.1 12.6
Prune And Plant 0.072 0.085 16.9 18.5 45.1
SS+E 0.068 0.080 12.7 10.6 41.2
Static Depth Limit 0.059 0.079 3.9 6.4 10.8
Tarpeian 0.064 0.080 2.2 3.5 5.2
Reference - - 93 5 380 360 -

97

B.13 Classification: Protein Structure Prediction (PSP-
100)

B.13.1 Problem Description and Parameters Used

This problem involves the prediction of a protein folding, formulated as a binary
classification problem. We used a dataset of 100 real-valued features consisting
of 10 folds of about 230 000 instances each for training and 25 000 each for test-
ing. The folds are distributed to the runs in a round-robin fashion. A run uses
10 000 training instances (sampled over the 230 000 instances of the fold) and
5 000 test instances (sampled over the 25 000 of the fold), a stratified random
sampling being made to preserve the class ratio. Moreover, the same training
and testing samples are used for all methods at a specific run i. The following
set of primitives is used: {+,−, ∗, /, iflessthan}, with the division operator pro-
tected, plus an ephemeral constant in the range [−1, 1]. The training error rate
was chosen as a fitness function. The dataset is available in the PSP database
at http://icos.cs.nott.ac.uk/datasets/psp/download.html.

B.13.2 Previous Results and References

This dataset has been proposed in various variants to form a complete test suite
with various difficulties (number of classes, number of features, class imbalance,
high number of instances, etc.). For this reason, it is difficult to compare results
because one must identify the exact dataset used. Yet, one can find some ref-
erence scores. In [5], an accuracy between 72 and 76% is reported for a SVM,
while a GA approach achieves an accuracy between 70 and 73%. Franco et
al. [20] reported an accuracy of 72.5% for the binary version of the classifica-
tion problem. Note that this dataset is also recommended in the recent GP
benchmarks review [73].

B.13.3 Results

Table 32: Detailed results of experiments conducted with the different bloat
control methods for PSP100.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.246 0.267 1.0 1.7 2.7
Dyn. Depth Limit 0.251 0.272 8.4 10.5 40.7
DynOpEq 0.238 0.269 10.2 26.4 42.0
FlatOpEq 0.243 0.270 4.4 10.2 12.7
HARM-GP 0.248 0.268 1.0 1.0 0.8
MutOpEq 0.249 0.278 4.2 6.6 16.6
Prune And Plant 0.253 0.276 10.1 11.0 52.2
SS+E 0.248 0.265 9.3 7.8 53.1
Static Depth Limit 0.242 0.269 2.4 4.3 11.0
Tarpeian 0.248 0.271 1.7 2.7 5.7
Reference - - 98 5 461 516 -

98

http://icos.cs.nott.ac.uk/datasets/psp/download.html

0 50 100 150 200

Mean size (number of nodes)

0.24

0.26

0.28

0.30

0.32

0.34

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Best classification error on the training set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.20

0.22

0.24

0.26

0.28

0.30

0.32

F
in

a
l
b
e
s
t

fi
t.

 (
tr

a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(b) Best-of-run training classification error boxplot

0 50 100 150 200

Mean size (number of nodes)

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

E
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(c) Best classification error on the test set vs. mean size of the population

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

F
in

a
l
b
e
s
t

in
d
.
e
rr

o
r

(t
e
s
t

s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

(d) Best-of-run test classification error boxplot

Figure 35: Performance and size results for PSP100, over 100 runs: (a) and
(c) plot the median of the classification error of the best individual found so far
(according to the training set), against the corresponding average mean solution
sizes, respectively measured on the training set and the testing set, with each
marker accounting for 10 000 evaluations, having some markers that may overlap
one over another or extend to the right of the graph; (b) and (d) are boxplots of
the classification error of the best-of-run individual (according to the training
set), respectively measured against the training set and the testing set.

99

0 20 40 60 80 100 120 140 160

Generation

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 s

iz
e

Double Tournament

Dyn. Depth Limit

DynOpEq

FlatOpEq

HARM-GP

MutOpEq

Prune And Plant

SS+E

Static Depth Limit

Tarpeian

(a) Mean individual size vs. generation

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

100

200

300

400

500

600

700

800

F
in

a
l
b
e
s
t

in
d
.
s
iz

e
 (

#
 n

o
d
e
s
)

(b) Best-of-run size boxplot

Double

Tournament

Dyn. D
epth

Lim
it DynOpEq

FlatO
pEq

HARM-GP

MutO
pEq

Prune And

Plant
SS+E

Static
 Depth

Lim
it Tarpeian

0

10

20

30

40

50

B
lo

a
t

le
v
e
l

(c) Bloat level boxplot

0.0 0.2 0.4 0.6 0.8

Accumulated size (number of nodes processed)

0.24

0.26

0.28

0.30

0.32

0.34

B
e
s
t

fi
tn

e
s
s
 (

tr
a
in

 s
e
t,

 l
e
s
s
 i
s
 b

e
tt

e
r)

×107

(d) Best classification error on the training set vs. accumulated size

Figure 36: Size and bloat results for PSP100: (a) average over 100 runs of
the mean individual size over the generations; (b) boxplot of the best-of-run
individual size; (c) boxplot of the bloat level at the last generation; and (d)
median over 100 runs of the best classification error on the training set achieved
according to the accumulated size. 100

Table 33: Detailed results of experiments conducted with the different bloat
control methods for PSP100, with equivalent computational effort.

Method Train Error (f̄∗x) Test Error (ḡ∗x) Size (s̄∗x) Effort (c̄x) Bloat (b̄x)
Double Tournament 0.239 0.267 1.3 2.3 4.0
Dyn. Depth Limit 0.251 0.272 8.5 11.7 40.7
DynOpEq 0.238 0.269 10.2 29.5 42.0
FlatOpEq 0.243 0.270 4.4 11.4 12.7
HARM-GP 0.242 0.267 1.0 1.0 0.2
MutOpEq 0.248 0.277 4.0 7.0 15.7
Prune And Plant 0.253 0.276 10.1 12.3 52.2
SS+E 0.248 0.265 9.3 8.7 53.1
Static Depth Limit 0.237 0.268 2.6 5.0 11.8
Tarpeian 0.240 0.270 2.1 3.8 8.1
Reference - - 98 4 882 353 -

101

	Introduction
	Bloat Control Methods
	Static Depth Limit
	Dynamic Depth Limit
	Parsimony Pressure and Double Tournament
	Tarpeian
	Prune and Plant
	Operator Equalization and its Variants
	Spatial Population Structure and Elitism (SS+E)

	HARM-GP
	Measuring Bloat
	Bloat Theories and Analysis
	Search Spaces Nature and Varieties of Bloat
	Structural vs. Functional Bloat
	Crossover Bias

	Generic Bloat Control Model
	Distribution Alteration by Histogram
	Modifications to OpEq
	Accept-Reject Method
	Histogram Smoothing

	Target Size Distribution Computation
	Overview of HARM-GP
	Evolutionary Loop
	Parameters
	Recommended Parameter Values

	Experimentations
	Comparison Methodology
	Results Overview
	Scatter Graph
	Relative Histogram
	Summary Tables
	Results with Equivalent Computational Effort

	Results by Problem Type
	Artificial Problems
	Symbolic Regression
	Real-life Symbolic Regression
	Classification

	Discussion
	Sensitivity Analysis of Parameters

	Conclusion
	Sensitivity Analysis of HARM-GP Parameters
	Detailed Results
	General Methodology
	Result Tables
	Result Graphs

	Artificial Ant
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Even Parity 8
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Symbolic Regression: Keijzer-6
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Symbolic Regression: Nguyen-7
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Symbolic Regression: Pagie-1
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Symbolic Regression: Vladislavleva-4
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Symbolic Regression: Bioavailability
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Symbolic Regression: Dow Chemical
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Classification: Adult Dataset
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Classification: Magic Gamma Telescope Dataset
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Classification: Spambase
	Problem Description and Parameters Used
	Previous Results and References
	Results

	Classification: Protein Structure Prediction (PSP-100)
	Problem Description and Parameters Used
	Previous Results and References
	Results

