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Abstract

In this paper, a semi-supervised graph-based method for
estimating 3D body pose from a sequence of silhouettes,
is presented. The performance of graph-based methods is
highly dependent on the quality of the constructed graph.
In the case of the human pose estimation problem, the miss-
ing depth information from silhouettes intensifies the occur-
rence of shortcut edges within the graph. To identify and
remove these shortcut edges, we measure the similarity of
each pair of connected vertices through the use of sliding
temporal windows. Furthermore, by exploiting the rela-
tionships between labeled and unlabeled data, the proposed
method can estimate the 3D body poses, with a small set of
labeled data. We evaluated the proposed method on several
activities and compared the results with other recent meth-
ods. Our method significantly reduced the mean squared er-
ror, showing the positive effect of removing shortcut edges.

We consider the problem of 3D human body pose esti-
mation from a sequence of monocular silhouettes. 3D hu-
man pose estimation is one of the imperative components in
many intelligent systems such as visual surveillance. The
human body is a 3D articulated object with a changing pose

depending on the current activity. The silhouette refers to a
solid shape and single color (usually black) image of a hu-
man body, with its edges matching the outline of the body.

In general, two main approaches exist to estimate the hu-
man pose: generative methods and discriminative methods.
On one hand, generative approaches require a 3D human
body model with parameters such as 3D joint angles, 3D
joint positions, and 3D shapes, which constitutes the pa-
rameter space. With respect to the synthetic body model,
a likelihood function, which indicates the probability of an
observed image conditioned on a given 3D pose, is con-
structed. By determining the extreme points of the like-
lihood function, several probable poses (hypotheses) are
given for an observed image [16]. The best hypothesis is se-
lected by rendering the 2D images of the hypotheses, select-
ing the hypothesis with the image, which is most similar to
the observed image [12]. Although generative approaches
are able to explicitly express constraints of the human body
and to estimate 3D poses of complex activities, modeling
an accurate likelihood function is hard, and searching the
high dimensional parameter space has a significant compu-
tational cost. Moreover, generative approaches require both
a good initialization point to start the search in this space
and an appropriate 3D human body model.

On the other hand, discriminative approaches directly



learn a mapping from the feature space, X, into the pose
space, Y, [3, 11]. Discriminative approaches do not have
the issues of generative methods; however, they face a one-
to-many mapping problem due to the loss of depth informa-
tion from images. In other words, although two silhouettes
are similar, their corresponding poses can be quite differ-
ent. Hence, these two similar silhouettes can be mapped
into distinct poses. In addition, since internal body edges
are removed from silhouettes, this issue (called depth am-
biguity challenge) is also more intense. Lastly, a consider-
able amount of labeled data from the entire feature space
is required in order to learn an accurate mapping func-
tion [3, 17].

Our proposal consists in a discriminative approach de-
signed to reduce the acuteness of the one-to-many mapping
problem typical of these approaches. This is achieved by
building a graph modeling the relations between silhouettes,
using a temporal sliding windows to remove any shortcut
edges of the graph that are likely to correspond to mislead-
ing associations between the silhouettes. The procedure is
semi-supervised as it relies on the use of both labeled (i.e.,
for which the real pose is known) and unlabeled data.

The remaining of the paper is organized as follows. In
Sec. 1, an overview of related discriminative approaches for
3D pose estimation is presented. Follows in Sec. 2 some ex-
planations on manifold learning and the Laplacian regular-
ization framework. Details of the proposed method are pre-
sented in Sec. 3, and the experimental results are presented
in Sec. 4. Concluding remarks are provided in Sec. 5.

1. Discriminative Approaches

A mixture of experts is often used in discriminative ap-
proaches for 3D pose estimation [3, 9, 17] by learning dif-
ferent regression functions for different regions (clusters) of
the input space. The main aim of clustering the input space
is to separate ambiguous silhouettes into different clusters
and to learn a local regression function for each cluster.
These clusters are obtained from labeled data, where each
cluster contains similar silhouettes whose corresponding
poses are similar too. The key issue of [3, 9, 17] is the
requirement of a large amount of labeled data (several thou-
sands) to correctly learn the local mappings.

Although the input and the output (pose) spaces are high
dimensional, it has been shown that the high dimensional
data points of a human activity lie on a low dimensional
manifold [8]. In [8, 11], dimensionality of data points is
explicitly reduced by using LLE [18] as a manifold learn-
ing method. Using the data manifold, the depth ambigu-
ity challenge is resolved since two near ambiguous silhou-
ettes, with respect to Euclidean distance, should be far away
on the manifold. Therefore, instead of learning a mapping
from the input space into the pose space, they learned a
mapping from the manifold into the pose space. In another

supervised method [7], a latent space is learned from the
joint feature-pose space by GPLVM [10], a probabilistic di-
mension reduction method. The authors disambiguated the
similar silhouettes that have dissimilar poses by consider-
ing temporal consistency among the sequential data. All of
these supervised methods [7, 8, 11] explicitly reduce the di-
mension of data, however it is possible that the geometric
relationships among data become distorted during this pro-
cess.

Semi-supervised approaches, which are considering both
labeled and unlabeled data, are able to estimate 3D poses
even with the existence of a small set of labeled data [6,
9, 13, 14]. Kanaujia et al. [9] presented a semi-supervised
method that extends the mixture of experts idea [3]. To ac-
curately learn the weights of each local mapping, the au-
thors approximated the data manifold by the k-NN (k Near-
est Neighbors) method. By exploiting the data manifold as
a prior knowledge, it can be determined whether two silhou-
ettes are truly near each other. However, if the constructed
graph contains shortcut edges, then the weights of each ex-
pert (i.e., local mapping) are not accurately estimated. Sim-
ilar to Agarwal and Triggs [3], this work still demands a
large amount of labeled data.

Pourdamghani er al. [14] presented a semi-supervised
method that neither considers a manifold as prior knowl-
edge nor reduces explicitly the dimension of feature and
pose space, rather estimating poses directly from both the
input data manifold and the pose data manifold, which are
approximated by k-NN. This is achieved first by estimating
the poses based on the input data manifold, then construct-
ing another graph (called pose data manifold) using the esti-
mated poses. This graph shows a pose data manifold which
is relatively close to the true manifold. Additionally, by ex-
ploiting the pose data manifold, the shortcut edges within
the input data manifold are identified, and their weight is re-
duced. The main drawback of this work is that the shortcut
edges within the input data manifold cause the poses to be
inaccurately estimated, and then based on these inaccurate
estimated poses, another graph is constructed with possibly
some dissimilar poses still connected.

In another semi-supervised method [15], a mapping from
the input space into a new space is learned from labeled
data, so that the ambiguous silhouettes are moved far away.
Afterwards, a graph is constructed by k-NN from data
points in this new space where it is assumed that this con-
structed graph has no shortcut edges. However, the quality
of this mapping function is highly dependent on the labeled
data.

Besides the aforementioned semi-supervised graph-
based methods for 3D human pose estimation, other graph-
based methods, in other computer vision applications, have
been proposed for learning new affinities without the need
for any labeled data [20, 21]. In particular, Yang et al. [20]



have obtained higher order information about the relation
between data points by applying the concept of a tensor
product graph (TPG). However, the construction of a TPG
has high time and memory complexity, such that the au-
thors proposed an iterative approach for propagation on the
original graph, and proved that this is equivalent to diffu-
sion on TPG. So, this iterative algorithm (equivalently the
diffusion of similarities on the TPG) creates new learned
affinities (i.e., new edge weights). The affinities are able to
approximate geodesic distances between data points.

We present a semi-supervised graph-based method that
estimates 3D poses of a sequence of silhouettes. As men-
tioned above, the depth ambiguity challenge causes the cre-
ation of shortcut edges within the constructed graph. We
are proposing to use two sliding temporal windows for de-
tection and elimination of the shortcut edges. Moreover,
in order to avoid losing the geometric relationship among
data, we have not explicitly reduced the dimensionality of
data. Instead, we have employed the geodesic distance to
approximate the real manifold. In contrast to some of the
previous methods, the proposed method neither requires a
large amount of labeled data since it can use both labeled
and unlabeled data, nor does it require the learning of many
parameters. Therefore, as we will show later, time com-
plexity for learning and prediction phases of the proposed
method are O(n?) and O(n?), respectively.

2. Learning on Manifold

It is known that many natural high dimensional data,
x; € RP, such as human faces and human activities, typ-
ically lie on a low dimensional manifold M € R? with
d < D, which corresponds to the intrinsic structure of data
x; [5, 8]. Moreover, one could discover the relationships
among data points by using the manifold structure rather
than the Euclidean distance in high dimensional spaces.

In general, two data points may be considered as nearby
in a high dimension space based on the Euclidean distance,
but the same two data points may be faraway on the man-
ifold, based on the geodesic distance. Geodesic distance
could measure the distance of two data points as the length
of the shortest path between them on the manifold M [5].
Learning approaches based on manifold consider two as-
sumptions for predicting the data labels of data: 1) nearby
data have the same label, and 2) labels of data points that
have the same structure are similar (manifold or cluster as-
sumption). Therefore, the labels of data that lie on a man-
ifold should be predicted by the geodesic distance rather
than the Euclidean distance.

Consider the labeling function f, where f indicates the
labels (y € R) of data points on M (f : M — R). We
are proposing to use the Laplacian regularization frame-
work [4] for learning f. Unlike [8], which explicitly re-
duces the dimension of input data to construct data mani-

fold, this framework discretely models it using a graph con-
struction algorithm [4]. The most common graph construc-
tion method is k-NN, in which each data point simply be-
comes connected to its k nearest neighbors [4, 9, 14].

The Laplacian regularization framework learns f based
on the manifold assumption. This assumption states that
the labeling function (f) should change smoothly on the
manifold. Therefore, the total summation of the absolute
value of the gradient of f (|V f|) over the manifold should
be small [4]. As we model a manifold by a graph (named
G7), the manifold assumption can be represented for the ad-
jacency matrix, W, of graph G as follows [4]:

I+u l4+u

SG(f):ZZwij(fi_fj)27 ey

i=1 j=1

where [ and v indicate the number of labeled and unlabeled
data, respectively, f; is the label of vertex 7, and w;; corre-
sponds to the binary weight of the edge between vertices i
and j of the graph G. This term expresses whether two data
points (¢ and j) are close enough so that they share an edge
(wi; = 1) in G, or not (w;; = 0). In such a case, we can
assign similar labels to them. So, the squared difference of
labels of such data points should be small (w;;(fi — f;)?).
This term is the discrete form of manifold assumption by
modeling a continuous manifold M by a graph G. The
above equation can be rewritten as follows:

I4+u l4+u

sa(f) =D wij(fi— f;)* =f'LE, (2
i=1 j=1

where L = W — D is the Laplacian matrix, D is a diago-
nal matrix obtained from D;; = Z?:i w;j;, and f € RIF
is the vector of labels. Finally, the Laplacian regularization
framework infers f (labels of data points) by minimizing the
Mean Square Error (MSE) of labeled data and the regular-
ization term (sa(f)):

l
f* = argmin s — ;)2 + ~fLLE, 3)
& ;(f vi)® +7

where 0 < ~ < 1 is the parameter that controls the in-
fluence of the regularization term. For v = 1, MSE and
manifold assumption (s¢(f)) play an equal role, while for
~ = 0, the manifold assumption is ignored, and labels are
learned based only on MSE. The above objective function
is convex and its optimal solution could be obtained by set-
ting its derivative (with respect to f) equal to zero [4]. Since
the time complexity of inverting an n X n matrix is at most
O(n?), the optimal solution can be obtained in O(n?) for
each dimension. Finally, since each pose y € R is d-
dimensional, the above objective function can be indepen-
dently solved for each dimension. Therefore, this process
has the time complexity of O(n3d).



Figure 1: The embedded walking manifold [8].

3. Proposed Method

To overcome the two main challenges of 3D human pose
estimation, depth ambiguity, and the lack of huge labeled
data, we present a semi-supervised graph-based approach.
We assume that a manifold for each activity can be approx-
imated by a graph construction method in the input space.
However, the constructed graph may contain many shortcut
edges, which are connecting two points that are far away
with respect to the underlying data manifold (i.e., two points
that have a large geodesic distance), while they are located
close enough to share a common edge in the k-NN graph
(i.e., two points that have a small Euclidean distance). To
illustrate this claim, Fig. 1 shows the manifold of a walking
activity. Although the frames 25 and 41 contain two similar
silhouettes, no edge connects these two silhouettes on the
real embedded manifold, since their 3D poses are totally
different. However, these two silhouettes might be con-
nected as nearest neighbors in the constructed graph. Con-
sequently, such distractive edges distort the approximated
manifold, and then lead to inaccurate label estimation. By
removing these shortcut edges, the approximated manifold
becomes more dependable for 3D body pose estimation.

In this work, we attempt to construct more accurate, and
dependable graph, not just based on similarity between each
node and its neighbors in the input space, but also by seek-
ing the similarity between temporal windows. Finally, we
employ Laplacian regularization framework for learning la-
bels.

Our work is inspired by Pourdamghani ez al. [14] to find
and remove the shortcut edges in the feature graph. How-
ever, they identified shortcut edges based on approximated
spatial information in the pose space, while this approxi-
mated information is not dependable. The proposed method
rather determine these destructive edges through the use of

temporal information. Therefore, we verify the similarities
of all the connected nodes in the feature graph with the tem-
poral information rather than the approximated spatial in-
formation.

The sliding temporal windows are used to detect and re-
move the shortcut edges from the constructed graph. We
assume that if two silhouettes are truly similar enough to
share an edge, then their temporal neighbors obtained from
the two temporal windows should be similar too. Therefore,
by measuring the similarity with the sliding temporal win-
dows, we assess whether two points connected by an edge
are truly close.

Our labeled data consists of sequential frames of a given
activity and unlabeled data, which is another sequence of
frames from the same activity. Take X = {z1,...,z,}
as the input data, where n = [ 4 wu is the total number of
data (labeled and unlabeled data). By employing the k-NN
method, a graph (called G (X, E)) is constructed.

Since there is a temporal relationship between each pair
of consecutive frames of a video, we can construct a tem-
poral graph for labeled data (called G (X', E!)) as follows.
Each input data at time ¢, xi could be connected to its pre-
ceding 2L _,, and its subsequent ! 41. Likewise, a tempo-
ral graph from unlabeled data could be constructed (called
G¥(X™, E})). Finally, these two graphs could be merged
into a single graph G4(X, E’) € R"*", where E’ consists
of the edges of graphs G¥ and G!. As mentioned earlier,
the undirected weighted graph Gy € R™*™ is constructed
by finding K nearest neighbors, N/, for each data point z;:

K K
G — i — 1 z;€N; \/;?l- € Nj
f f 0 otherwise

The graph G'; contains three types of edges as follows:

“)

TypeI : edges connecting data points close together in
time.

Type II : edges connecting repeated similar poses when an
activity is performed.

Type III : shortcut edges due to some ambiguity in the in-
put space.

An edge is denoted as type I if its two connected vertices
are reachable at most by four hops through the temporal
graph G¢. We choose this number of hops as we observed
that each pose becomes different from the poses that are
reachable with more than four hops in G;. To distinguish
whether a specific edge G}J is of type II or III, we consider
two temporal windows of five frames, and assume that 7¢
and j*' are centered on temporal windows at time ¢ and time
t’, respectively (Fig. 2).

The similarity of these temporal windows is measured by
counting the number of edges that connect vertices jt/+k
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Figure 2: Two temporal windows contain temporal neigh-
bors of vertices j* and i*. The similarity of these windows
indicates whether the edge G’ (black edge) is a shortcut.

and i'** in Gy, where k € [—2,2] (red dashed edges in
Fig. 2). Therefore, if these two temporal windows are suf-
ficiently similar, which is indicated by the threshold 6, the
edge G}] is classified as type II. Indeed, while performing a
specific activity, similar poses often occur, so it is expected
these windows will be tagged as similar. Otherwise, the
edge connects two ambiguous silhouettes (type III), which
is indicated by dissimilar temporal windows. In this situ-
ation, the edge weight should be reduced by being set to
a € [0,1]. We set the value of a to 0.1, based on a 5-fold
cross-validation.

The modified graph (called G’}) is obtained from Gy as
follows:

-tk otk
el (&3) _ ar G0 _ 1 Zi:_g G;J Fians} -0
! / [} otherwise

)
To learn the parameter 6, first the graph g,(Y, E) is con-
structed from labeled data by using the k-NN in the pose
space, where its vertices, Y, are the corresponding 3D
poses of the silhouettes. It is important to mention that
the graph g, is a dependable graph since this graph has no
shortcut edges, and all of its connected vertices have sim-
ilar labels. In addition, another graph (called g; (X', EJ))
is extracted from G, where its vertices, X!, are the rep-
resentation of the labeled data in the input space (silhou-
ette). Similarly to Gy, this graph may have some shortcut
edges. We discover the existing shortcut edges in gy us-
ing the geodesic information that is available in g,. When
an edge is identified as a shortcut edge, the similarity of its
corresponding temporal windows is measured by counting
the number of edges of g that connect vertices within these
two temporal windows (Fig. 2). This value for each shortcut
edge of gy is calculated and all of these values are accumu-
lated in S. In dividing S by the number of shortcut edges in
gy, the parameter 6 is obtained. The algorithm for learning
parameter 6, is shown in Algorithm 1.
To illustrate the effect of the aforementioned modifica-
tions on G, the proposed method is applied to a 5-NN
graph that is constructed from 150 sample data points (100

Algorithm 1 Learning of parameter 6.

Require: g, (Y, E/). g;(X', E})
S=0 > Sum of similarity from shortcut edges
Cc=0 > Number of shortcut edges in gy
for all g’ = 1 do
if vertex j not reachable from vertex i by at most by
4 hops in graph g, then

2 ke 4!
Ses+ 3 gf
k=—2
C+—C+1
end if
end for
0=S8/C

Figure 3: The 5-NN constructed graph of circular walking
data. The detected shortcut edges are shown in red color.
The silhouettes are correspond to the vertices with the blue
square markers.

samples as labeled data and 50 samples as unlabeled data)
of the circular walking data set (Fig. 3). To visualize the
constructed graph, we reduced the dimensionality of the
corresponding pose vectors to 3 (dimensionality reduction
is achieved by a kernel PCA using a Gaussian kernel). Fig. 3
depicts the red edges as the detected shortcut edges by the
proposed method. In addition, in order to show the rele-
vance of the removed edges in Fig. 3, the corresponding sil-
houettes to some nodes (with blue square marker), which
are connected by the detected shortcut edges, are mani-
fested.

The temporal information is implicitly used for the con-
struction of G’]’c. We can also explicitly benefit from the
temporal information by exploiting the edges of G, (called
G’} + G ). Since poses of an activity change smoothly over
time, the added edges to G’} do not distort the manifold as-
sumption.



4. Experimental Results

In this section, we compared the performance of the pro-
posed method with some recent semi-supervised methods,
in addition to SGPLVM [7], a generative approach that con-
siders the temporal information. Furthermore, to investigate
the impact of using the temporal graph and the removal of
shortcut edges on the accuracy of pose estimation, we ap-
plied Laplacian regularization on the graphs G/, G’} + G,
and G + G:. Here, we used the MSE of joint angles be-
tween the true and estimated joint angles as a measure of
performance.

4.1. Datasets

Like other authors, we considered various activities such
as circular walking [2, 7], swimming, boxing, and walk-
ing forward and backward [14, 15]. The true 3D poses of
these activities (except circular walking) are provided by the
CMU motion capture data [1]. Moreover, the images of all
activities are produced by Poser, a computer graphic pack-
age from Curious Labs. It is worthwhile to note that the
3D poses of all activities are represented by 54 dimensional
vectors.

The circular walking data set of Agarwal and Triggs [2]
consists of two separate sequential datasets. The first set
which has 1691 frames is used as the labeled data, and the
other one with 418 frames is used as the unlabeled data. To
choose the labeled and unlabeled data from the swimming,
boxing and walking data set [1], we have sequentially se-
lected the labeled data from the first frame up to 20, 40,
and 60 percent of the whole data, and the remainder of the
data was used as the unlabeled data. It is important to note
that the temporal relationship between the last frame of the
labeled data, and the first frame of the unlabeled data has
been removed intentionally, given that this information is
not available in real world applications.

4.2. Quantitative Comparison of Graphs

As mentioned before, to show the effect of removing the
shortcut edges and adding the temporal information, we ap-
plied Laplacian regularization on the graphs G/, G’} + G,
and Gy + G;. For each activity, 60 percent of the whole
data is chosen as the labeled data, and the remainder of the
data set is considered as the unlabeled data.

Fig. 4 shows the MSE curves as a function of K on the
walking (a) and swimming (b) datasets, where K indicates
the number of nearest neighbors in k-NN. The comparison
of MSE curves for Gy and Gy + G shows that as the value
of K increases, the impact of temporal edges becomes less
on their MSE performance. In other words, as K increases,
more irrelevant edges appear in the graphs. Hence, due
to the profound negative effect of the irrelevant edges for
larger values of K, the positive effect of adding temporal
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Figure 4: Mean Squared Error (MSE) of the proposed
method (Glji + Gy), Gy, and Gy + Gy as a function of the
number of nearest neighbors on (a) swimming and (b) walk-
ing activities.

edges into graph G ¢ is decreased until the MSE of G ¢ + G+
converges to the MSE of G'y. Moreover, the comparison
of MSE curves for Gy + G and G?e + G4, (the proposed
method) reveals the significant influence of removing short-
cut edges in reducing the MSE of the proposed method.
Therefore, when shortcut edges are removed and temporal
edges are added to G ¢, the MSE remarkably reduces.

In addition, for extremely small or large values of K, the
label propagation is not conducted properly. Therefore, the
value of K should be chosen to be large enough to ensure
sufficient connectivity between the edges while avoiding the
construction of irrelevant edges. Based on our observations
we choose K=5, and also let v be 10~* in all of our experi-
ments.

4.3. Quantitative and Subjective Comparison of
Methods

To see the impact of removing the shortcut edges from
G, we compared MSE of Laplacian regularization frame-
work on two graphs G ¢, as the base graph, and G’} +Gy. In



Table 1: Mean square error comparison of the TGP, GC+RT, and G ; with the proposed method (G]; + Gy).

Activity (# all data) % labeled data | TGP  GC+RT Gy  Proposed method
60 % 7.28 5.30 5.25 5.04
Circular walking (1961) 40% 8.54 5.37 5.41 5.15
20 % 21.42 7.63 7.46 7.42
60 % 12.01  10.51  10.00 9.34
Boxing (1400) 40% 1791  12.04 11.69 10.87
20% 18.95  12.18 11.75 10.96
60 % 5.03 491 4.77 3.55
Swimming (1202) 40 % 5.75 5.38 5.30 4.54
20% 7.10 6.67 6.65 6.57
60 % 4.80 4.36 4.17 3.80
Walking (1000) 40 % 5.26 4.57 4.39 4.20
20% 8.59 5.65 5.23 4.99
addition, our method (G’} + G¢) was compared with TGP 56
(Twin Gaussian Processes) [6], and GC+RT [14], as two re- N ‘f“BPNG diff
cent semi-supervised methods for human pose estimation, e, —u-Gf
on circular walking, swimming, boxing, and walking activ- s proposed method
ities (see Table 1). As shown in the table, MSE of TGP in T .
comparison with the other methods is considerably higher, CIR R,
particularly when a small number of labeled data is acces- vi; s > g
sible. This shows that TGP needs a large amount of la- S. G T

beled data to accurately estimate 3D poses. Moreover, as
Table 1 manifests, our method significantly reduced MSE
in all cases of all activities since this method properly de-
tects the shortcut edges within the base graph, G'¢, and re-
moves their destructive effect. Therefore, it can be con-
cluded that our method estimates 3D poses more accurately
than GC+RT, and the base graph G/;.

Also, in Fig. 5 we compared the proposed method
with TPG diffusion [20] and Dominate Neighbor (DN)
method [19], two recent state of the art methods. We used
the parameters suggested in their papers and employed the
Laplacian regularization on all these graphs to estimate 3D
poses. In contrast to the k-NN method that simply finds
k nearest neighbors for all vertices, DN is a novel method
that finds dominant neighbors for each vertex, x;, based on
both pairwise similarities of x; with other vertices, and sim-
ilarities between other vertices. TPG diffusion learns new
affinities by diffusing the affinities on the Tensor Product
Graph (TPG).

Fig. 5 reveals that DN outperforms G ¢ since it finds bet-
ter nearest neighbors than G's. The TPG diffusion method,
which iteratively diffuses similarities on graph G ¢, may in-
tensify the negative effect of the shortcut edges in G¢. As a
result, the existence of the shortcut edges may effect the per-
formance of the TPG diffusion method. For circular walk-
ing, DN competes with our method in performance.

Furthermore, we compared our method with a genera-
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N ~--TPG diff
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Figure 5: Mean square error of the proposed method, TPG
diffusion, and dominant neighbor (DN) as a function of per-
centage of labeled data on two different datasets walking
(a) walking forward and backward (b) circular walking se-
quences.



Figure 6: Subjective comparison: The first column shows
the ground truth for each activity, the second and third

columns show the results of Laplacian regularization on the
modified graph G’} + Gy, and Gy, respectively.

tive approach, SGPLVM [7], on the circular walking ac-
tivity. SPGLVM explicitly reduces the dimensionality of
data points, and used temporal information to disambiguate
some ambiguous silhouettes. However, the dimension re-
duction may misrepresent the real geometric relationships
among data points. The MSE of SGPLVM on the circular
walking (as reported by its authors) is 5.3, while its time
complexity for learning this model’s parameters and infer-
ence are O(n3) and O(n*), respectively. Using the same
labeled and unlabeled data (data set), the MSE of our pro-
posed method is 4.97, while its time complexity for learn-
ing and inference are O(n?) and O(n?), respectively. In
comparison with SGPLVM, our method is not only faster
at completing the learning and the prediction phases, but it
also accurately estimates 3D poses of the unlabeled data.

Fig. 6 illustrates the subjective comparison of the ground
truth (first column), the proposed method (second column),
and the original graph G¢ (third column). The first row,
second row, and third row present the swimming, boxing,
and walking activities, respectively. These subjective re-
sults were obtained from 60 % labeled, and 40 % unlabeled
data for each activity.

5. Conclusions

In this paper, we introduced a new semi-supervised
graph based method for 3D human pose estimation from a
sequence of silhouettes. The proposed method takes advan-
tage of the relationships between the labeled and unlabeled
data, thereby eliminating the requirement for a large num-
ber of labeled data. Furthermore, it directly estimates the la-
bels of data points from the approximated manifold that can
be obtained from a graph construction method (i.e., k-NN).
Moreover, to identify and remove the shortcut edges from
this graph, we employed a temporal window scheme, and
compared the similarity between each pair of temporal win-
dows. Finally, we evaluated our method on a range of activ-
ities such as walking, boxing, and swimming. Based on the
experimental results, our method depicted the positive ef-
fect of removing shortcut edges from the base graphs. Ad-
ditionally, for all activities, our method estimated 3D poses
more accurately than TGP, GC+RT, and TPG diffusion.
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