
Noname manuscript No.
(will be inserted by the editor)

Describing 3D Geometric Primitives Using the Gaussian
Sphere and the Gaussian Accumulator

Zahra Toony · Denis Laurendeau · Christian Gagné

Received: date / Accepted: date

Abstract Most complex object models are composed
of basic parts or primitives. Being able to decompose
a complex 3D model into such basic primitives is an
important step in reverse engineering. Even when an
algorithm can segment a complex model into its primi-
tives, a description technique is still needed in order to
identify the type of each primitive. Most feature extrac-
tion methods fail to describe these basic primitives or
need a trained classifier on a database of prepared data
to perform this identification. In this paper, we pro-
pose a method that can describe basic primitives such
as planes, cones, cylinders, spheres, and tori as well as
partial models of the latter four primitives. To achieve
this task, we combine the concept of Gaussian sphere to
a new concept introduced in this paper: the Gaussian
accumulator. Comparison of the results of our method
with other feature extractors reveals that our approach
can distinguish all of these primitives from each other
including partial models. Our method was also tested
on real scanned data with noise and missing areas. The
results show that our method is able to distinguish all
of these models as well.

Keywords Shape description � Principal primitives �
Gaussian sphere � Gaussian accumulator

Z. Toony · D. Laurendeau · C. Gagné
Computer Vision and System Laboratory, Department of Elec-
trical and Computer Engineering, Université Laval, Québec,
QC, Canada
E-mail: zahra.toony.1@ulaval.ca

D. Laurendeau
Tel.: +1 418-656-2979
Fax: +1 418-656-3159
E-mail: denis.laurendeau@gel.ulaval.ca

C. Gagné
E-mail: christian.gagne@gel.ulaval.ca

1 Introduction

The availability of fast and accurate 3D sensors has
favored the development of different applications in
assembly, inspection, Computer-Aided Design (CAD),
reverse engineering, mechanical engineering, medicine,
and entertainment, to list just a few. While 2D cam-
eras capture 2D images of the surface of objects, either
black-and-white or color, 3D cameras provide informa-
tion on the geometry of an object surface. Today, newly
introduced 3D cameras can acquire the appearance and
geometry of objects concurrently.

One of the most difficult tasks in machine vision
consists in object recognition/description. Over the
past four decades, object recognition has been a very
active research topic [30]. To identify an object and add
a new object automatically to a database requires seg-
mentation, tracking and classification algorithms [45].
Object recognition can be split into two categories. The
first category refers to the methods dealing with 2D im-
ages and for which recognition is achieved using image
intensity. The second category considers 3D geometric
models built from point clouds or meshes for recogni-
tion [30]. A recognition method needs an embedded fea-
ture description process in order to recognize the type
of each model.

It has been observed that 85% of complex objects
found in industrial applications can be modeled by
planes, cylinders, cones and spheres [36]. Adding the
toroidal models in the set of primitives allows 95% of
industrial objects to be described [36]. Discriminating
or, in other words, describing the type of these sim-
ple/basic primitives is usually a difficult task. Most de-
scriptors or methods that extract features from models
work properly on complex models because they extract
these features from different parts of an object which

2 Zahra Toony et al.

have specific properties, e.g. high curvature parts. But
since the basic models are similar in their different parts
and there is no specific property in their parts, most of
these methods fail to extract discriminative features.
So, a specific feature descriptor is needed to describe
each of these primitives. Some well-known descriptors
such as SIFT [26] and Spin Images [20] are proposed
for complex models, some other descriptors such as D2
[33] and Laplacian spectra descriptor [53] are proposed
for simple models. More precisely, Laplacian spectra is
introduced to extract features from CAD models.

In this paper, a method for describing the simple
basic geometric primitives of 3D models is presented.
The primitives of interest are planes, cylinders, cones,
spheres, and tori, as well as partial instances of the lat-
ter four types. The method first decides whether a given
unknown primitive belongs to the plane-cylinder-cone
class or to the sphere-torus class. When the unknown
primitive belongs to the plane-cylinder-cone class, the
Gaussian sphere of the primitive is analyzed to find
the correct primitive type. When the unknown primi-
tive belongs to the sphere-torus class, a new concept,
the Gaussian accumulator, is introduced to identify the
correct type of primitive.

The goal of this paper is to propose a method to
identify the type of geometric primitives to which parts
of 3D models resulting from a segmentation process be-
long to. The method is based on the analysis of simple
surface properties (e.g. normal to the surface, distribu-
tion of the normals) and does not require the use of a
classifier for primitive identification. Experiments show
that the method works well for CAD models or real
scans of 3D objects and it can deal with complete or
partial primitives. The proposed method finds applica-
tions in many fields such as reverse engineering of 3D
parts, part-to-CAD analysis and quality control.

The motivation for this work is to support reverse
engineering or part-to-CAD applications. In reverse en-
gineering for instance, an object needs to be scanned
by a 3D scanner. The scan then needs to be processed
in order to find its basic geometric primitives that are
then assembled as a CAD model. A common approach
for processing the 3D scans is to use segmentation algo-
rithms that identify the different segments of the object.
It is then required to find to which type of geometric
primitive (e.g. plane, sphere, cylinder, cone, torus) a
segment belongs to. This paper proposes an approach
for achieving this last task. For the applications tar-
geted by this paper, an accurate 3D scanner (i.e. a
metrologic sensor) is used since Kinect-like sensors do
not provide the level of accuracy that is required in
metrology.

The reminder of the paper is organized as follows.
Related work is presented in Section 2. In Section 3,
we expose the problem with more details and introduce
the new descriptor that is proposed to discriminate ba-
sic primitives from each other. Section 4 shows the ef-
ficiency of the approach and presents experimental re-
sults obtained with different synthetic models. These
results are compared with other methods. The method
is also tested on real scanned models and on the results
of a segmentation approach [48]. Finally, we conclude
the paper in Section 5 and propose directions for future
research.

2 Related Work

Consider a database of three-dimensional (3D) mod-
els. An application of 3D object recognition consists
in matching objects in the scene with models in the
database and to estimate their pose. Object pose is de-
termined by six degrees of freedom in 3D (three trans-
lation parameters and three rotation parameters). So,
the problem of 3D object recognition consists in recog-
nizing a model in a 3D scene with respect to models in
a database while considering its 3D pose.

The 3D data which contains geometric properties
can be obtained from different sensors such as stereo
cameras, time of �ight laser scanners, active sensors
such as the Microsoft Kinect or Panasonic DI-Imager
[30]. All of these sensors capture a 2.5D scan of the ob-
ject. In order to capture the entire 3D geometry model
we need to capture scans from different viewpoints and
then apply registration and integration algorithms in
order to obtain the 3D model. There are also sensors
such as the Creaform Go!Scan 3D scanner which cap-
tures the geometry of an object and, as an output, re-
turns a complete 3D mesh model with no need for reg-
istration/integration.

Several issues should be considered when working
with 3D models [30]: occlusion, when part of a 3D object
is self-occluded or is occluded by another object; clutter,
when a scene contains objects that are close to each
other and may touch; noise, capturing the 3D model
of an object always contains noise caused by the sensor
and by the quality of scanning; and sampling resolution,
the 3D model can be captured with different sensors
and also with different accuracy levels which may affect
the captured geometry.

The analysis and retrieval of a 3D mesh (a complete
geometrical model) is commonly used in a number of
real-world applications such as object recognition and
image retrieval. The 3D meshes are generally very large
in size and irregular in both shape and resolution. It is
not easy to design descriptors capturing the geometric

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 3

structure of even the simple 3D meshes such as spheres,
and cylinders.

Such feature sets are called �shape descriptors�
which can describe shapes locally or globally [7]. A
global descriptor represents a whole mesh as a feature
vector which includes some information such as �area�,
�volume�, �statistical moments�, �Fourier coefficients�,
�eigendecomposition of Laplace-Beltrami operator� [8],
�wavelet parameters� [34], �diffusion embeddings� [51],
and �skeleton based representations� [22].

2.1 Global Descriptors

Several global descriptors are proposed in the litera-
ture to describe the whole object using a single compact
representation of shape. These methods are efficient but
sensitive to occlusion and clutter [30]. One of these well-
known approaches, the D2 descriptor, was presented in
2002 by Osada et al. [33]. They first sample random
pairs of points from the model and then calculate the
Euclidean distance between each pair. They then con-
struct a histogram based on the intervals of distances.
This histogram is the global descriptor of the 3D model
and works better for simple objects than for compli-
cated 3D models. These descriptors are compared with
each other using the L1 norm.

A similar descriptor, the Sur�et-Pair-Relation His-
tograms, presented in [49], samples a pair of oriented
points. Instead of computing only the distances between
these points, it rather finds a four-dimensional feature
vector that is invariant to rotation and translation. The
features include distances and normal information. A
classifier is then used to learn this 4D feature descrip-
tor to recognize the objects. A robust recognition rate
is obtained by using Kullback-Leibler and likelihood
matching approaches. The method is still sensitive to
noise.

The global descriptor presented in [17] calculates
the surface normal and the curvature value. It then
takes locally the depth value of each pixel of the object
and groups them in a multidimensional histogram as a
descriptor. Another global descriptor called �Potential
Well Space Embedding� is proposed in [41]. It is based
on comparing a 7D error function using the properties
of the ICP (Iterative Closest Point) algorithm [4]. Ob-
ject recognition is performed by comparing the feature
vectors of runtime data with those of the preprocessed
database.

The Spherical Harmonic Descriptor by Kazhdan et
al. [21] is another global descriptor. This rotation invari-
ant shape-descriptor is based on spherical harmonics.
The main idea consists in decomposing a 3D model into

a collection of functions defined on concentric spheres
and to use spherical harmonics to discard orientation
information (phase) for each one. Another approach
based on Laplacian spectra [53] has been proposed for
CAD models. Each 3D model is simplified using the
idea of progressive meshes introduced by Hoppe [18].
Then the perturbed Laplacian spectrum approach is
applied to extract the features. Using these values, a
spectral distribution is built for each model. These dis-
tributions are then compared using the Kullback-Leiber
divergence measure.

Recently, in addition to global descriptors, local de-
scriptors have also attracted attention [7,5,29]. In such
approaches, a mesh is described by a set of local de-
scriptors, each of them characterizing a specific neigh-
borhood of vertices in the mesh. Each mesh can be de-
scribed by a different number of descriptors. For local
descriptors, a set of vertices is defined as the neighbor-
hood on which the descriptor value is computed. These
vertices are called interest points. The selection of in-
terest points is important and allows the identification
of variant or invariant features.

In the following, we cover the relevant work on in-
terest point detectors, local descriptors for mesh ob-
jects, and the Bag of Words (BoW) approach in mesh
retrieval as well.

2.2 Interest Point Detectors

In a given mesh, we wish to identify a set of vertices
that can describe the shape of a surface well. There
are many different ways to select these vertices, their
neighborhood as well as the shape descriptors. A per-
formance evaluation of several kinds of 3D detectors
has been performed recently in [46]. As an example,
in [29], the authors use Principal Component Analysis
(PCA) to extract the features. For each vertex, they
define a sphere centered on the vertex with a specific
radius. Then, all vertices inside the sphere are defined
as neighbors. A covariance matrix of the neighborhood
is then constructed and the eigenvalues are calculated.
And finally, the feature points are the vertices for which
the ratio between the two leading eigenvalues is maxi-
mized.

In [37], the eigendecomposition of the Laplace-
Beltrami operator is first calculated over the mesh.
Based on the smallest eigenvalues of the Laplace-
Beltrami operator, the eigenfunctions are computed
and the feature points are the local extremum points of
these functions. Two other methods based on Laplace-
Beltrami operator are proposed to find surface features.
In [12] and [44], a Heat Kernel Signature (HKS) func-
tion is calculated over the surface using the Laplace-

4 Zahra Toony et al.

Beltrami operator and extremum points of the HKS
are considered as feature points.

Other methods are extracting feature points locally.
Sipiran and Bustos [42] proposed an extension of the
seminal Harris corner detection scheme [16] which con-
siders a quadratic patch as the vicinity of a vertex to
extract feature points.

Litman et al. [25] represent the surface as a tree us-
ing a graph-based diffusion formulation and then com-
pute graph theoretic measures. Some other methods
such as [50] exploit the difference of Gaussian (DoG)
operators as a detector. They first apply a set of Gaus-
sian filters on a mesh's curvature function and compute
the mesh's octaves. To calculate the DoG functions they
subtract each octave from its subsequent octave. The
local maxima of the DoG function are selected as the
interest points. It is in fact a Mesh-DoG operator. A
Mesh-SIFT operator was proposed in [27] for which lo-
cal features are scale-space extrema. Another method
based on DoG was proposed in [6]. They first apply
Gaussian filters to the mesh and find differences be-
tween the octaves to obtain DoG function. This proce-
dure is then repeated on a different downsampled ver-
sion of the input surface. The interest points are the
local maxima of the DoG function, repeated at various
downsampled ratios. Recently, a new method was pro-
posed in [7], which uses an improved DoG based detec-
tor. For each interest point, an intrinsic scale detector
is proposed to derive two scale invariant local features.

2.3 Local Descriptors

Feature detection methods are often used as a prepro-
cessing step to describe a mesh or a surface with a re-
duced amount of data. A recent comprehensive evalua-
tion of 3D local descriptors as well as a survey on local
surface features have been proposed in [14] and [13], re-
spectively. In [15], a new local reference frame has also
been introduced in order to extract local features for
3D recognition. In the following we present two well-
known local descriptors. The Spin Image mesh descrip-
tor, which was proposed in [20], contains two dimen-
sional accumulators. One is a (positive) perpendicular
distance to the surface normal direction, �, and the
other one is the signed (positive or negative) perpen-
dicular distance to the tangent plane (P), �. The plane
is determined by the vertex normal and position (n, p).
Thus, a rotation-invariant descriptor sums all accumu-
lators of the vertex related to (�, �) in a radius around
the interest point (see figure 1).

The Mesh-DOG and the Mesh-SIFT approaches
that are presented in [50] and [27] respectively intro-
duce a detector and also a descriptor where the Mesh-

DOG is invariant to rotation, translation and scale and
the Mesh-SIFT is invariant to rotation and translation.

As 3D data sets are common in medical image pro-
cessing applications, the 3D-SIFT scheme was proposed
in [38]. This method was then applied to object recogni-
tion in CT volumes by [10]. In [7], two scale and rotation
invariant local descriptors in 3D meshes are presented:
1) the Scale Invariant Spin Images, a scale invariant ex-
tension of original Spin Images [20]; 2) the Local Depth
SIFT, the extension of local SIFT descriptor [26] in 3D
meshes.

2.4 Bag of Words Approaches

The Bag of Words scheme, which is based on local de-
scriptors, is used to retrieve images [43] or meshes [5,
9] from a large database of models. In a dataset of im-
ages or meshes, the BoW method first defines a feature
dictionary from local descriptors and then quantizes
the features to dictionary words. Afterwards, each data
model is described by the histogram of its local features
while each feature is represented by the dictionary word
closest to it. When a query model is processed, its fea-
ture histogram is compared with all model histograms
in the database to find similar models as the result [7].

In [32], SIFT descriptors are extracted from a set of
depth images captured from different views of 3D ob-
jects. These descriptors are then quantized to prepare
the dictionary words and the BoW approach is used
for shape retrieval. Furuya and Ohbuchi [11] extended
this approach to extract more local visual features us-
ing a dense depth image sampling. When spatial in-
formation is taken into account in the BoW approach,
the result can be more accurate, so Bronstein et al.
[5] propose to use the statistics of neighboring features

Fig. 1: Spin images: 3D point of a mesh with coordinate
of p and normal n is shown in the figure. Two accumu-
lators can be calculated given a 3D point: �, the radial
distance to the surface normal line L and �, the axial
distance above the tangent plane P [19].

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 5

as spatial information. A method which uses a visual
dictionary and spatial knowledge is presented in [24].
After voxelizing the 3D surface, SURF features [2] are
extracted from each voxel, used to build a visual vocab-
ulary, and then a Hough Transform-like voting method
is used to build the histogram for each set of words.
An extension of this work is proposed in [23] to make
the voting process invariant to rotation and scale. In
[7], the BoW approach was simply used to illustrate
the relevance of the proposed local features for high-
level tasks such as mesh retrieval. This method yields
robust 3D features compared to other state-of-the-art
approaches which combine the SIFT and Spin image
features at the same time. The authors present a struc-
ture to detect the interest points in 3D meshes and then
compute their corresponding descriptors. As a descrip-
tor, they first calculate a scale invariant formulation
of spin images and then they adapt the classical SIFT
feature extraction method to 3D data by considering
the neighborhood of each interest point as a depth map
and estimating its dominant angle using PCA to obtain
rotation invariant features.

After extracting the features from the objects, ei-
ther local features or global ones, the object recogni-
tion process can be carried out. Object recognition is
mostly based on 2D images and video analysis. The
most successful methods are based on statistical ma-
chine learning theory such as kernel methods. In order
to use learning approaches, some proposed methods rely
on a feature extraction process [1]. In particular, [31,39]
try to extract features from a set of 2D images taken
from different views. Then, based on these features, the
object is recognized without considering its 3D geome-
try [1].

Since most feature extraction methods fail to ex-
tract distinctive features from simple/basic models, we
are proposing a method to extract features for such ba-
sic models. In addition, even when some descriptors can
extract discriminative features from basic models, there
is still a need for a learning method to achieve recog-
nition. In other words, a classifier needs to be trained
to learn the distinctive features. Our goal, here, is to
present a description (recognition) strategy without us-
ing a classifier in order to avoid having trained such a
classifier.

3 Proposed Method

As mentioned earlier, the basic geometric primitives be-
ing considered in this paper are planes, cones, cylinders,
spheres, and tori, as well as partial instances of the lat-
ter four primitive types. The strategy for identifying

the type of a primitive consists of using surface nor-
mal information and the Gaussian sphere to first de-
cide whether the primitive belongs to the plane-cone-
cylinder class or to the sphere-torus class. The analy-
sis of the Gaussian sphere and the introduction of the
concept of the Gaussian accumulator then allows the
correct type of the unknown primitive to be identified.

The work�ow for finding the type of an unknown
geometric primitive from a 3D point cloud or a 3D mesh
is a three-step process:

STEP 1 Compute the normal vector at points in a
point cloud or at vertices in a mesh of a prim-
itive of an unknown type;

STEP 2 Using surface normal information, build the
unit Gaussian sphere and determine whether
the primitive belongs to the plane-cone-
cylinder class or the sphere-torus class. If the
primitive belongs to the plane-cone-cylinder
class, identify the type of primitive.

STEP 3 When the primitive appears to belong to the
sphere-torus class, the Gaussian accumulator,
a concept introduced in this paper, is built
and analyzed to find the primitive type.

Step two is useful because as shown in figure 2,
normal vectors to the points of a plane map to a sin-
gle point on the Gaussian sphere. Normal vectors to
the points of a cylinder, map on a great circle of the
Gaussian sphere while normal vectors to the points of
a cone map on a small circle. The orientation of the cir-
cle depends on the orientation of the axis of the cylin-
der/cone.

It is thus clear that a proper analysis of the Gaussian
sphere allows these types of primitives to be identified.
However, as also shown in figure 2, normal vectors to
the points on a sphere or on a torus distribute over the
entire Gaussian sphere and it cannot be used to dis-
criminate spheres from tori. So, step three is important
to deal with these primitive types.

3.1 Computation of Surface Normals

The first step of the proposed approach consists in iden-
tifying the unit normal vector of the points of the sur-
face of an unknown type primitive. Several methods
have been proposed for computing normal vectors. For
point cloud data, we use the method proposed in [52]
while, for 3D meshes, we consider the normal of a ver-
tex as the average of normals of its neighboring faces
[35].

6 Zahra Toony et al.

Fig. 2: 3D principal primitives with their normals on the model and on the Gaussian sphere.

3.2 Construction and analysis of the unit Gaussian
sphere

Once the unit normal vector of each point at the surface
of a primitive of unknown type has been found, it is easy
to map its end point on the surface of the Gaussian
sphere (examples of such mapping are shown in figure
2).

Principal Component Analysis (PCA) is used to
find the plane passing through the points on the unit
Gaussian sphere. The eigenvector corresponding to the
smallest eigenvalue is the normal vector n̂ to the PCA
plane. Usually, in order to define a plane, we use a nor-
mal vector to the plane and a point on the plane. Having
the normal of the PCA plane, we need a point to define
the plane completely. The point can be considered as
the mean of the points on the unit Gaussian sphere.
However, using the mean causes a problem for cones
with a cap.

As a matter of fact, as shown on the second column
of the first line in figure 3, for a cone with a planar
cap at its base, normal vectors near the base map on a
different circle on the unit Gaussian sphere. This causes
the mean value of the points to fall between this circle
and the small circle corresponding to the normals of
the rest of the cone. The final result is that the points
on the Gaussian sphere may end up far from the PCA
plane. This problem is easily solved if the median of
the points on the Gaussian sphere is used instead of
the mean, as illustrated on the third column of the first
line in figure 3. For a cone without a cap, choosing the
median does not have any adverse impact (second line
in figure 3). In the rest of the paper, the term PCA
plane refers to the plane passing through the median of
the points on the Gaussian sphere.

Since the PCA plane is available, it is possible to
analyze its behavior on the Gaussian sphere with re-
spect to the different types of primitives of interest. Fig-
ure 4 summarizes observations made on 650 computer-
generated primitive models set up by 3DsMax. The gen-
erated primitives cover the scale of man-made objects
(from 1mm to 100mm). Table 1, lists the types of mod-
els as well as the number of each type (planes are not

3D Model Mean Median

0.5672 0.7071

0.7093 0.7071

Fig. 3: Comparing the result of fitting a plane on the
normals mapped on the Gaussian sphere using mean
and median for a cone model with and without cap.
The first row shows the result for a cone with a cap and
the second row presents the result of a cone without a
cap. The first column is the 3D model with the normals,
the second and third columns show the normals on the
Gaussian sphere with PCA fitted plane using the mean
and the median, respectively. The values in the second
and third columns represent the distance of the plane
from the origin.

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 7

considered since they all map on a single point on the
sphere).

For cylinders (full or partial, figure 4b), the points
distribute as a great circle on the unit Gaussian sphere
and so the PCA plane passes through the origin of the
Gaussian sphere. For cones without a cap at the bottom
(full or partial, figure 4c), the points distribute as a
small circle on the unit Gaussian sphere and so the
PCA plane is at a given distance from the origin of the
Gaussian sphere depending on the aperture of the cone
(the larger the aperture, the greater the distance). For
cones with a cap at the bottom (full or partial, figure
4d), the points belonging to the conical part map on a
small circle on the unit Gaussian sphere while points
near the cap map on another circle near the origin.

For full spheres and full tori (figures 4e and 4f
left) points spread almost everywhere on the Gaussian
sphere and the PCA plane is any plane passing through
the origin. For partial spheres and partial tori (figures
4e and 4f right), points distribute on the sphere de-
pending on the shape but, again, the PCA plane is any
plane passing through the points.

Based on the above observation and on experimental
validation, it is possible to identify the type of primi-
tives by analyzing the distribution of the normals on the
Gaussian sphere in the vicinity of both sides of the PCA
plane. First, each normal ni on the Gaussian sphere is
projected on the PCA plane normal vector ~n:

pi = ni� ~n. (1)

Considering all N normals mapped on the Gaussian
sphere, the set MAP(N) is obtained:

MAP(N) = fpiji = 1, ..., Ng. (2)

Second, the following quantities are computed:

pMAX = maxfMAP(N)g, (3)

Type of Primitive # of models

Cylinder (full) 100

Cylinder (partial) 30

Cone without cap (full) 100

Cone without cap (partial) 30

Cone with cap (full) 100

Cone with cap (partial) 30

Sphere (full) 100

Sphere (partial) 30

Torus (full) 100

Torus (partial) 30

Table 1: 3D Models in GPrimDB [47]

pMIN = minfMAP(N)g, (4)

�p = pMAX � pMIN, (5)

�2
p = V ar(MAP(N)), (6)

pMAX and pMIN are the maximum and minimum val-
ues of MAP(N). �p is the difference between the values
while �2

p is the variance of MAP(N). Let ε be a distance
margin on both sides of the PCA plane, � be a small
positive value (i.e. � � 1), N1 and N2 be the number
of points on the Gaussian sphere outside the distance
margin on each side of the PCA plane respectively, and
C a parameter. Figure 5 illustrates these parameters
for a generic case of the Gaussian sphere.

If the points on the Gaussian sphere for which the
normal distance to the PCA plane is included in the
[�ε,+ε] interval are removed, the situations presented
in figure 6 will be observed for different types of prim-
itives. How the value of ε is selected, will be discussed
later (Algorithm 1).

Returning to figure 6: for a �plane� primitive (figure
6a), �p and �2

p are small (even in the presence of noise
for real scans) and the number of points on both sides
of the PCA plane and outside the distance margin 2ε
is small with respect to the total number of points N
(i.e. N1 + N2 < �N with � � 1). This is explained
by the fact that points on the Gaussian sphere map
as a dense group near the �true� normal to the plane
primitive (not the PCA plane).

For a full or partial cylinder (figure 6b) or a cone
without a cap (full or partial, figure 6c), �p and �2

p are
also small since the points on the great circle (for cylin-
der) or on the small circle (for a cone without a cap)
concentrate very close to the PCA plane and, conse-
quently, N1 = N2 = 0. The distance d is the dis-
tance of the PCA plane from the origin of the Gaussian
sphere. When these conditions are met, if distance d is
zero, the primitive is a cylinder, and when 0 < d < 1,
then the primitive is a cone without a cap.

For a partial sphere, (figure 6d), or a partial torus
(figure 6e), �p is smaller than the threshold considered
in algorithm 1, �2

p is large, N1 and N2 are not zero and,
even for a large value of ε (compared to its value for
full spheres or full tori which N1

N2
is large if N1 < N2 or

N2
N1

is large if N2 < N1).
Finally, for a cone with a cap, (figure 6h), �p is large,

�2
p is large and either N1 or N2 is equal to zero. When
N1 = 0, N2 is not small due to the points of the cap

8 Zahra Toony et al.

Primitive Type Primitive icon Mapping on the Gaussian sphere
(full left, partial right) (Full) (Partial)

(a) Plane

(b) Cylinder

(c) Cone without cap

(d) Cone with cap

(e) Sphere

(f) Torus

Fig. 4: Typical unit Gaussian sphere for all types of primitives (full and partial) with the PCA plane passing
through the median (black plane). For a plane, sphere, and torus the PCA plane is arbitrary since there is no
privileged direction.

on the Gaussian sphere which map far from the PCA
plane.

The value of C is used to determine whether an
unknown primitive belongs to the plane-cylinder-cone
class or to the sphere-torus class. When C ≤ t1, a given
threshold, the primitive belongs to the plane-cylinder-
cone (with or without cap) class and to the sphere-torus
class otherwise.

If the primitive belongs to the plane-cylinder-cone
class, it is a cylinder if the PCA plane is at distance
d = 0 from the origin of the Gaussian sphere or it is a
cone if 0 < d < 1. In both cones, either N1 or N2 or

both are zero. When d = 1 and N1 +N2 is a small value
or zero, it is a plane.

If the primitive belongs to the sphere-torus class,
the Gaussian sphere does not contain enough informa-
tion to allow the identification of the type of primitive,
a situation that is clearly visible in figure 6d to 6g. The
concept of Gaussian accumulator presented in the next
section is introduced to achieve a necessary differentia-
tion.

Algorithm 1 describes the steps for computing ε and
C. Parameter ε is used to discard points on the Gaus-
sian sphere near the PCA plane and the value of C is
used to identify to which group the unknown primitive

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 9

PCA Plane

ñ
{ ɛ

{ ɛ

Distance margin

on both sides of

the PCA plane
• • •

•

•
•

•
•

•

•
•

•
•

• •
•

•
•

•
•

•

•
•

•
•

•

•
•

•

•

•

•
•

• •
•

•
•

•

•

•

• •
•

•

•

• •

•
•

•

• •
•

•
•

• •
•

•

•

•

•

•

•
•

• •

•
•

• •

•

•

•

•

•

•
•

•

•

• •

•

• •
•

•

•
•

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•
•

•

•
•

•

• •

• •

•

•

•

•

•

•

•

• • •
•

• •
•

•

•
•

•

•
•

• •

•

•

•
•

•
•

•
•

• •

•

•
•

•
•

•

•

•

•
•

• •

•

•

•

•

•
•

•

•

•

•

•

•

•
•

• •

•
•

•
•

•

•

•

• •
•

•

•

• •

•

•

•
•

•

•
•

•
•

•

• •
•

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

• •

•

•

N1

N
2

Fig. 5: Different parameters used for analyzing the
Gaussian sphere.

belongs to. The formulas for computing ε and C are
derived based on the observation of the 650 primitives
generated with 3DsMax CAD software and on exper-
iments run on scans of objects. Based on observation
and experiments, the value of t1 was empirically set to
0.1. This value is used for all experiments presented in
this paper (see section 4).

3.3 Applying the Gaussian accumulator to the
sphere-torus class

As demonstrated in the previous section, although the
Gaussian sphere allows the unambiguous identification
of planes, cylinders, cones, and partial instances of the
latter two, it fails to identify spheres and tori since the
surface normals of such primitives spread over its entire
surface. However, careful observation of the distribution
of surface normals on the Gaussian sphere (see figure 7)
shows that this distribution is nevertheless different for
spheres and tori. The top row of figure 7 shows a sphere
and a torus with 4187 and 4176 vertices, respectively.
The center and third row of figure 7 show side and top
views of the distribution of the surface normals on the
Gaussian sphere for both primitives. This distribution
clearly differs for spheres and tori. Being able to mea-
sure this difference allows spheres to be differentiated
from tori as well as partial instances of both.

In this work, it is proposed to use a spherical his-
togram called the �Gaussian accumulator� to analyze
the distribution of surface normals for spheres and
tori. The Gaussian accumulator is a unit sphere with
V = 1000 vertices and tessellated into 1996 singular
cells distributed evenly on the surface of the sphere (see
figure 8 and 9 for examples of Gaussian accumulators
with these properties). The choice of V will be discussed

Algorithm 1: The pseudo code to determine if the
model is in the �rst category or in the second category.

Input: 3D model G.
1. N← Compute normals of the model G.
2. Apply PCA on the normal points (N).
3. ñ← Select the eigenvector related to the smallest

eigenvalue as the normal of the plane.
4. P̃ ← Find the plane with the median of the normal

points, N, and the normal of the plane, ñ.
5. ∀ni ∈ N, map ni on normal ñ:

MAP(i) = ni· ñ.
6. if max{MAP} −min{MAP} ≤ 0.3 then

if V ar(MAP) ≤ 0.001 then
ε = 0.1;

else
ε = 0;

end
else
ε = max MAP−min MAP

5 ;
end

7. Compute,
∀ni ∈ N, ED(i) = ‖ni − Plane P̃‖2.

8. Remove all ni from N which ED(i) ≤ ε.
9. Select,

N1 = the points of N that are in the same direction of
the ñ,
N2 = the points of N that are in the opposite
direction of the ñ,

10. if |N1| = 0 or |N2| = 0 then
C = 0;

else if |N1|+ |N2| ≤ |N | × 0.01 then
C = 0;

else if |N1| ≤ |N2| then
C = |N1|

|N2| ;
else

C = |N2|
|N1| ;

end
Output: C.

in more detail in section 4 concerning the experimen-
tal results. In the following the steps for calculating the
Gaussian accumulator are presented:

STEP 1 Prepare a unit sphere with V = 1000 vertices
and tessellated into 1996 cells,

STEP 2 For a given model, compute the surface nor-
mal at each vertex map the normals on the
surface of the Gaussian accumulator,

STEP 3 Using the k-d tree algorithm [3], find the cor-
responding cell and increment the count for
this cell of the accumulator,

STEP 4 Sort the voted Gaussian accumulator in order
of decreasing count value (see figure 12 for ex-
amples of such accumulators for spheres and
tori)

10 Zahra Toony et al.

Primitive Normals on the Gaussian sphere Parameters

(a) Plane

2ɛ ≠ 0

• • • • • •
•

• • •
• • •

•
• • •

• •

N1 ≠ 0

d

• • • • • • •
• • •

• •

N2 ≠ 0

• • •
•

δp small
σ2
p small
ε small, set to 0.1
N1 +N2 < αN, α� 1
d = 1
C set to 0

(b) Cylinder (full or partial)

2ɛ ≠ 0

•

•
•

• •
•
•

•
•

•

•

•
•

• •

•

• • •

N1 = 0

N2 = 0

•

•

•
•

• • •

•

•

•

•
•

• • •

•

• • •

• • •

•

• •

• • •

•

•

• • •

• • •

•

• •

• • •

•

•

•
•

• •
•

•

• •

•

• •

•

• •

•

•

• •

•
•
•

δp small
σ2
p small
ε small, set to 0.1
N1 = 0
N2 = 0
d = 0
C set to 0

(c) Cone without cap (full or partial)

2ɛ ≠ 0

•

• •

•

• •
•

•
•

•

•

•

•
• •

•

•
•

N1 = 0

N2 = 0

•

•

•
•

• • •

•

•

• •

• • •

•

• • •

• • •
•

• •

• • •

•

•

• • •

• • •

• •

• • •

•

•

•
•

• •
• •

•

• •

•

• •

•
•

•
•
•

d

δp small
σ2
p small
ε small, set to 0.1
N1 = 0
N2 = 0
0 < d < 1
C set to 0

(d) Partial sphere

2ɛ = 0

•
• •

•

•

N
1
≠
 0

N

2
≠
 0

• • •

•

•

• •

• •

•

•

•
• •

•

•

• •

•

• •
•

•

•
•

• • •
•

•
•

•
•

•

•
•

•
•

• •
•

•
•

•
•

•

•
•

•
•

•

•
•

•

•
•

•
•

• •
•

•
•

•

•

•

δp small
σ2
p large
ε small, set to 0
N1 6= 0
N2 6= 0
d = 0
C = N1

N2
if N1 < N2 or N2

N1
if N2 < N1

(e) Partial torus

2ɛ = 0

•
• •

•

•

N
1
≠
 0

N

2
≠
 0

• • •

•

•

• •

• •

•

•

•
• •

•

•

• •

•

• •
•

•

•
•

• • •
•

•
•

•
•

•

•
•

•
•

• •
•

•
•

•
•

•

•
•

•
•

•

•
•

•

•
•

•
•

• •
•

•
•

•

•

•

•
• •

•

•

•

• •

•

•

• •

• •

•

•

•
• •

•

•

• •

•

•

•
•

•

•
•

• • •
•

•
•

•
•

•

•
•

•
•

• •
•

•
•

•
•

•

•
•

•
•

•

•
•

•

•
•

•
•

• •
•

•
•

•

•

•

δp small
σ2
p large
ε small, set to 0
N1 6= 0
N2 6= 0
d = 0
C = N1

N2
if N1 < N2 or N2

N1
if N2 < N1

(f) Full sphere

2ɛ ≠ 0

•

•
•

• •
•

•

•
•

•

•

•
•

• •

•

•

•

•

N1 ≠ 0

N2 ≠ 0

•

•

•
•

• • •

•

•

•

•

•

•

•

•

•

•

•
•

• •

•

•

• •

•
•

•

•

•

•

• •

• • •

•

•

•

• • •

•

•

•

•

• • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

• • •

•

•

• •

• •

•

•

•

•

•

•

•

• •

•

• •
•

•

•

•

• • •
•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•

•
•

•

• •

•
•

• •
•

•
•

•

•

•

•
• •

•

•

•

• •

•

•

• •

• •

•

•

•
• •

•

•

• •

•

•

•
•

•

•
•

• •
•

•

•
•

•
•

•

•
•

•
•

• •
•

•
•

•
• •

•
•

•
•

•

•
•

•

•
•

•
•

• •
• •

•
•

•

•

•

• •

•

•

•
•

•

•

•

• •

•

•
•

•
•

•

•
•

•

•
•

•
•

•

•

• • •

•
•

•

•

•

• •

•

•
•

•
•

•

•
•

•
•

•
•

•
•

•

• • • •

• • •

•

•

• •

•

•
•

•
•

•

•
•

•
• •

•
•

•

•

• •

• •

• • •

•

•

• •

•

•
•

•
•

•

•
•

•
• • •

•

•

• • • •

• •

•

•

• •

•

• • •
•

•

•
• • •

•
•

•

•

•

•

•

•
•

•
•

•

• •

•

• •

•

•

•

•

•

•
•

•
•

•

•
•

•

•
•

•

• • •
•

•

•

•
•

•

•

•

•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•
•

•

•
•

•

•

• •
•

•

•

• •
•

•
•

•
•

•
•

•
•

•
•

•
• •

•
•

•

•

•

•

•

δp large
σ2
p large
ε large, set to δp

5
N1 6= 0
N2 6= 0
d = 0
C = N1

N2
if N1 < N2 or N2

N1
if N2 < N1

(g) Full torus

2ɛ ≠ 0

•

•
•

•
•

•

•

•

•

•
•

• •

•

•

•

•

N1 ≠ 0

N2 ≠ 0

•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

• •

•
•

•

•

•

•

• •

•
•

•

•

•

•

•
•

•

•

•

•

• • •

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

• • •

•

•

• •

• •

•

•

•

•

•

•

•

• •

•

• •
•

•

•

• • •
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•

•
•

• •

•
• •

•
•

•

•

•
• •

•

•

•

• •

•

•

• •

•

•
•

•

•

• •

•

•

•
•

•

•
•

• •
•

•

•
•

•
•

•

•
•

•
•

• •
•

•
•

•
• •

•
•

•
•

•

•
•

•
•

•
•

• •
• •

•
•

•

•

• •

•

•
•

•

•

•

•

•
•

•
•

•
•

•

•
•

•
•

•

•

• • •

•
•

•

•

• •

•

•
•

•
•

•

•
•

•
•

•
•

•
•

•

• • • •

• • •

•

•

• •

•

•
•

•
•

•

•
•

•
• •

•
•

•

•

• •

• •

• • •

•

•

• •

•

•
•

•
•

•

•
•

•
• • •

•

•

• • •

• •

•

•

• •

•

• • •

•

• • •
•

• •

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

• •
•

•

•

•
•

•

•

•

•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

• •
•

•
•

•

•
•

•
•

•
•

•
• •

•
•

•

•

•

•

•
•

δp large
σ2
p large
ε large, set to δp

5
N1 6= 0
N2 6= 0
d = 0
C = N1

N2
if N1 < N2 or N2

N1
if N2 < N1

(h) Cone with cap (full or partial)

2ɛ ≠ 0

•

• •

•

• •
•

•
•

•

•

•

•
• •

•

•
•

N1 = 0

N2 ≠ 0

•

•

•
•

• • •

•

•

• •

• • •

•

• • •

• • •

•

• •

• • •

•

•

• • •

• • •

• •

• • •

•

•

•
•

• •

• •

•

• •

•

• •

•
•

•
•
•

d

•

• •

•

• •
• •

•

•

•

•
• •

• •

•

•

•
•

• • •

•

• •

• • •

•

• • •

• • •

•

•

• • •

•

•

• •

• • •

• •

• •
• •

•

•
•

• •

• •

•
•

•

•

• •
•

•
•

δp large
σ2
p large
ε large, set to δp

5
N1 6= 0 if N2 = 0
N2 6= 0 if N1 = 0
0 < d < 1
C set to 0

Fig. 6: Illustration of normals distribution on the Gaussian sphere with respect to the PCA plane and parameters
associated with each situation.

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 11

Fig. 7: The dispersion of normals on the Gaussian
sphere for spheres and tori. The first row shows the
3D models, the second row and the third row represent
the side view and top view of the 3D models' normals,
respectively.

STEP 5 Calculate the statistical moments (mean, vari-
ance, skewness, and Kurtosis) of the sorted
Gaussian accumulator.

Before explaining how statistical moments can be
used to discriminate spheres from tori, it is impor-
tant to address an essential issue that arises in building
the Gaussian accumulator. Depending on whether one
wishes to differentiate between spheres and tori result-
ing from CAD models or real scans, the distribution of
vertices on the model must be taken into account. As
illustrated in figure 8, the distribution of vertices on a
CAD model or a model obtained by decimation of a
finer CAD model or a real scan is very different. For
�pure� CAD models (built with 3DsMax for instance)
of spheres and tori, one clearly observes poles on the
triangulations of their vertices. At these poles, the con-
centration of vertices is much higher than elsewhere on
the primitive (the equator for instance). This uneven
distribution of vertices causes an uneven distribution
of surface normals and, ultimately, leads to a biased
Gaussian accumulator.

One way to circumvent this problem for CAD mod-
els consists in generating a sphere or a torus, for in-
stance, with four times the desired number of vertices
and then to decimate the model to the desired number
of vertices using decimation algorithms such as the one
available in Meshlab. The second and fourth columns in
figure 8 show the result of the decimation of CAD mod-
els of a sphere and a torus with 6080 and 5704 trian-
gles, respectively. The Gaussian accumulator for these
models clearly shows that this processing eliminates the
poles and yields �suitable� Gaussian accumulators.

CAD Model Decimated
Model CAD Model Decimated

Model

1520 1520 1426 1426

Fig. 8: Triangulations of the CAD models and their
decimated models with their results of voting on the
Gaussian accumulator. The first row shows the trian-
gulation of the CAD models and their decimated ones
using MeshLab. The result of voting on the Gaussian
accumulator is shown in the third row. The values under
the 3D models, in the second row, present the number
of triangles for each model.

This process works well for CAD models but it is
however impractical for real scans since nothing pre-
vents the user from accumulating points more densely
in specific areas of the scanned objects. A better and
more general approach that is proposed in this paper
rather consists in implementing a Gaussian accumula-
tor cell incrementation procedure that takes into ac-
count the density of triangles in the neighborhood of
each surface normal (i.e. at each vertex of the triangu-
lar mesh). This incrementation method, which is called
�Density-Weighted-Voting�, works as follows: The first-
ring set of neighboring faces is found for each vertex i
of the mesh. This set is composed of all triangles having
i as a vertex and is called N1i. The density Si at vertex
i is defined as:

Si =
∑

j∈N1i
areaj

jN1ij
, (7)

where, jN1ij is the size of N1i and areaj is the area of
the jthtriangle in the set. In order to find the area of a
triangle, we simply identify two adjacent side vectors of
the triangle and then the area is half the cross product
norm of these two adjacent vectors [28]:

areaj = 1
2 juj � vj j, (8)

where, uj and vj are the two adjacent side vectors of
triangle j.The surface normal at i is mapped on the
Gaussian accumulator and the cell corresponding to ni

is incremented by Si (instead of 1). This incrementa-
tion strategy prevents a cell from being incremented
several times because of a large concentration of trian-
gles on the mesh. Figure 9 shows the results achieved

12 Zahra Toony et al.

by Density-Weighted-Voting compared to regular vot-
ing. The last column indicates that the Gaussian ac-
cumulator built with Density-Weighted-Voting is more
uniform for spheres and tori (see the color code at the
rightmost side of the figure).

CAD Model Regular Voting Density
Weighted Voting

Fig. 9: The difference between regular voting of the
Gaussian accumulator in comparison with our proposed
Density Weighted Voting approach for the CAD models
with poles.

Once the Gaussian accumulator is available, its cells
are first sorted in order of decreasing count value and
statistical moments are computed on the sorted his-
togram. In this work, variance, skewness, and Kurtosis
are computed and analyzed in order to check whether
or not they can be used to discriminate between spheres
and tori. The Gaussian accumulator for the CAD mod-
els of spheres and tori (see table 1 for the number of
models in each category) were built and the three above
statistical moments were computed. It is important to
mention that the CAD models for spheres and tori in
the database span a wide spectrum of sizes and scales of
man-made objects. In addition, both sparse and dense
models with respect to the number of vertices are in-
cluded in the database. For the experiments made in
this work, the Gaussian accumulator was composed of
1000 vertices and 1996 cells.

Figure 10 shows plots of different combinations of
statistical moments computed on the Gaussian accumu-
lator of the spheres and tori in the database. Figure 10a
plots the skewness of the Gaussian accumulator over its
variance, figure 10b plots the Kurtosis over the variance
and figure 10c plots the Kurtosis over the skewness. Fi-
nally, figure 10d plots the skewness over the variance
scaled by the Kurtosis value of the Gaussian accumula-
tor for each model in the database. Figure 10a and 10b
suggest that the skewness and Kurtosis seem poten-
tially relevant to separate spheres from tori. Focusing
on the skewness, figure 11, which plots the value of this
moment for all sphere/torus models in the database,
reveals that this moment alone can be used to discrimi-

nate these two types of primitives by mere thresholding:

skewness < τ → sphere,

skewness > τ → torus.

(with τ = 2)
(9)

Careful observation of the area near the threshold
value in figure 11 also shows that a very small number of
tori (1) have a skewness value smaller than the defined
τ and could thus be misclassified as spheres. However
these models are tori with very few vertices and do not
show many geometric details. Such instances of tori are
not likely to be found in real-world applications. As
pointed out above, simple thresholding of the skewness
value suffices to differentiate spheres from tori. How-
ever, should one want to train a classifier, this would
be possible since as spheres in figure 12, the sorted his-
togram of the Gaussian accumulator of spheres and tori
have enough richness to be used as feature vectors.

4 Experimental Results

This section presents the results obtained by the
method presented in this paper for recognizing differ-
ent primitive types. The method was tested on CAD
models of geometric primitives, 3D models of primitives
scanned with a 3D sensor and, finally, on primitives ex-
tracted from complex models of scanned objects using
the segmentation approach described in [48]. The re-
sults show that the proposed method is successful in
identifying the types of primitives of interest (plane,
cylinders, cones, spheres, and tori).

For all experiments reported in this paper, the
Gaussian accumulator is composed of 1000 vertices gen-
erating 1996 triangular cells which creates a uniform
tessellation at the surface of the sphere. The Particle
Sample Sphere method described in [40] was used for
tessellating the sphere.

4.1 Experimental results on the CAD models

As mentioned in figure 12, one may want to use the
proposed accumulator as a descriptor. For this pur-
pose the results of the proposed method applied on the
GPrimDB database of CAD models [47] are compared
to those based on improved SIFT and Spin-Images in-
troduced in [7], the Laplacian spectra method [53] pro-
posed for CAD models, the Spherical Harmonic De-
scriptor (SHD) introduced in [21] and D2 descriptor
presented in [33]. The GPrimDB database contains 520
CAD models: 100 cones, 100 cylinders, 100 spheres, 100

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 13

0 0.5 1 1.5 2 2.5 3

x 10
4

−2

0

2

4

6

8

10

12

14

16

18

Variance

S
k
e
w

n
e
s
s

Sphere

Torus

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

250

300

350

400

450

Variance

K
u
rt

o
s
is

Sphere

Torus

(a) (b)

−2 0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

350

400

450

Skewness

K
u
rt

o
s
is

Sphere

Torus

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Variance/Kurtosis

S
k
e
w

n
e
s
s
/K

u
rt

o
s
is

Sphere

Torus

(c) (d)

Fig. 10: The different plots of the Gaussian accumulator's statistical moment. Part (a), shows the Skewness of the
Gaussian accumulator over its variance. The Kurtosis over the variance and the Kurtosis over the Skewness are
shown in parts (b) and (c), respectively. Part (d) presents the plot of Skewness over the variance proportional to
the Kurtosis value.

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

12

14

16

18

The Model

S
k
e
w

n
e
s
s

Sphere

Torus

Fig. 11: The Skewness value of the Gaussian accumula-
tor for 100 spheres and 100 tori.

tori, 30 partial cones, 30 partial cylinders, 30 partial
spheres and, 30 partial tori. The SIFT/Spin-based are
used with 15 words in the Bag of Words while the D2
descriptor uses a 1024-bin histogram. Figure 13 shows
the results achieved by the 5 approaches listed above.
These results show that SIFT, Spin-Images, Laplacian
spectra, and SHD approaches do not have enough rich-
ness to differentiate between the different types of prim-
itives. Only the D2 descriptor seems to have enough dis-
criminative power to identify primitives while a classi-
fier needs to be trained to separate the primitives. How-
ever, the D2 descriptor lacks the discriminative power
in the presence of partial primitives as shown in fig-
ure 14. For instance, depending on the model, partial
cylinders have D2 descriptors that are similar to tori,
some other are similar to cones and the rest are similar
to complete cylinders. Partial spheres of some models
have D2 descriptors that are very similar to cones while
some partial tori are similar to cylinders.

The approach presented in this paper can deal suc-
cessfully with complete and partial models of each type

14 Zahra Toony et al.

Sphere Torus

Fig. 12: The sorted histogram of Gaussian accumulator values for 10 spheres and 10 tori. The histograms emphasize
the similarity between spheres and between tori.

of primitive. As an example, the normals of a partial
cone are making a small circle on the Gaussian sphere
while, for a partial cylinder, the normals make a great
circle which is similar to complete cones and cylinders.
So, the method is able to discriminate between partial
cones and partial cylinders. Figure 15 shows the re-
sult of the PCA plane fitting on the normals of partial
cylinders and cones. The results indicate that using the
distance of the plane from the origin, we can discrimi-
nate partial cylinders from partial cones as well as their
complete models. In the figure, there are both large and
small slices of a cylinder and a cone. For the cone with
cap, because of large numbers of points on the faces
between the model and the cap, the calculation of the
normal vector using PCA changes a little but we are
still able to determine if it is a cone or a cylinder us-
ing the distance of the plane from the origin while for
the cone without a cap, the calculation of the plane's
normal is accurate.

As discussed in the previous section 3.1, a value
must be computed for parameter C for some types of
primitives (see Algorithm 1). Table 2 lists the max, min,
and mean value of parameter C for the different types
of models in the database. From the table, the value of
the threshold t1 for separating primitives in the sphere-
torus category from the other types of primitives was
set to 0.1.

The resolution of the Gaussian accumulator for sep-
arating spheres from tori was investigated. Figure 16
shows the plots of the skewness for each sphere and
torus primitive in the database, full or partial, with
different resolutions (i.e. numbers of vertices and num-
bers of triangular cells) for the Gaussian accumulator.

Based on experiments conducted with different parame-
ter values, a sphere with 1000 vertices and 1996 triangu-
lar cells was chosen empirically. The figure also shows
that for these parameter values, a value of 2 for the
threshold t2 in Algorithm 1 can discriminate between
spheres and tori. It can be observed from the figure that
the number of vertices or, more generally, the number
of triangular cells on the Gaussian accumulator does
not have a significant impact on the recognition result.
All plots present a similar threshold for discriminating
spheres from tori, full or partial.

3D Model Min Max Mean

Sphere 0.5714 1 0.9461

Partial Sphere 0.2821 1 0.8014

Torus 0.8696 1 0.9945

Partial Torus 0.6774 1 0.9756

Cylinder 0 0 0

Partial Cylinder 0 0 0

Cone without
Cap 0 0 0

Partial Cone
without Cap 0 0 0

Cone with Cap 0 0.0625 0.0081

Partial Cone
with Cap 0 0.0217 0.0018

Table 2: Min, max, and mean value of C value intro-
duced in Algorithm 1.

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 15

4.2 Real Scanned Models

This section presents the results of our method for real
scanned models and complex models composed of sev-
eral different primitive types. The first row of figure
17 shows a complex CAD model which is segmented
into its primitives using the 3D-NCuts segmentation
approach [48] with the primitives identified by the pro-
posed approach. The second row shows the results of
segmentation for a mug model using the 3D-NCuts
method and the result of primitive identification using
our approach. For the mug model, since we wanted to
show the results of primitive identification for the cylin-

der without a cap and torus (handle of the mug), we did
not consider the bottom part of the mug. The C value
is given for each primitive and, for the primitives in the
first category (plane-cone-cylinder), the distance from
the origin is presented as the d value. The primitives in
the second category (sphere-torus) can be distinguished
using the skewness which is presented as the S value.

In order to test our approach on real scanned mod-
els, we used the Creaform Go!SCAN handheld 3D scan-
ner to scan a sphere, a torus, two cones, a plane, a cylin-
der, a partial sphere, and two partial tori. The results
are shown in figure 18. The first column shows the 3D
scanned models. The second column shows the num-

Method Cone Cylinder Sphere Torus

SIFT

Spin-Images

Laplacian
Spectra

SHD

D2

Fig. 13: Comparison between feature extraction methods for our principal primitives.

16 Zahra Toony et al.

Cone Cylinder Sphere Torus

Partial Cone Partial Cylinder Partial Sphere Partial Torus

Fig. 14: D2 descriptor for the principal primitives and their partial models.

ber of vertices, the third column presents the C value
and, finally the last column shows either the d value for
the distance of the PCA plane from the origin or the S
value for the skewness value. The C values greater than
t1 = 0.1, correspond to the models in the first category
(i.e. the first four models). In the first category, if jdj
is close to one then the model is a plane (first row), if
it is close to zero then the model is cylinder (second
row), otherwise it is a cone (third and fourth rows). In
the second category, if S is greater than t2 = 2 then
the model is a torus (last three rows), otherwise it is
a sphere (fifth and sixth rows). The last row shows a
partial torus with missing data but using the C and S
values, mentioned above, the partial torus is identified
correctly to be a torus.

5 Conclusion

In this paper, we proposed a method for recognizing
simple geometric primitives. At first, we identify the
normals of the model, map them all on a Gaussian
sphere and then we fit a plane using PCA. Based on
the proposed algorithm, when a parameter C is smaller
than threshold t1, the model is in the first category
(plane-cone-cylinders); otherwise, it is in the second
category (sphere-torus). For the first category we deter-
mine the distance of the PCA plane from the origin and
for the second category we calculate the skewness value
of the Gaussian accumulator. Comparing our method
with approaches based on descriptors, our method does
not require any classifier and is also able to recognize
partial models, real noisy models as well as objects with
missing data.

Partial Cylinders Partial Cones without Caps Partial Cones with Caps

0.00414 0.00078 0.5052 -06674 0.3164 -0.6041

Fig. 15: Partial cylinders and cones on the Gaussian sphere with the distance of the PCA plane from the origin
which is shown in the last row.

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 17

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5

6

7

The Model

S
k
e

w
n

e
s
s

Sphere

Torus

Partial Sphere

Partial Torus

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

The Model

S
k
e
w

n
e
s
s

Sphere

Torus

Partial Sphere

Partial Torus

(a) vertices = 100, triangles = 196 (b) vertices = 200, triangles = 396

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

10

12

14

The Model

S
k
e

w
n

e
s
s

Sphere

Torus

Partial Sphere

Partial Torus

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

12

14

16

18

The Model

S
k
e

w
n

e
s
s

Sphere

Torus

Partial Sphere

Partial Torus

(a) vertices = 500, triangles = 996 (b) vertices = 1000, triangles = 1996

Fig. 16: The result of the Gaussian accumulator for partial spheres and partial tori as well as complete spheres
and tori with different number of cells. The values in each part show the number of vertices and triangles (cells)
for the accumulator.

Acknowledgements This work was supported by the
NSERC-Creaform Industrial Research Chair on 3D Sensing. Z.
Toony was supported by a FRQNT post-graduate scholarship.

References

1. Baareh, A.K., Sheta, A.F., Al-Batah, M.S.: Feature based
3D object recognition using arti�cial neural networks. Int.
Journal of Computer Applications 44 (2012)

2. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up ro-
bust features. In: 9th European Conf. on Computer Vision
(ECCV), pp. 404�417. Springer (2006)

3. Bentley, J.L.: Multidimensional binary search trees used for
associative searching. Communications of the ACM 18(9),
509�517 (1975)

4. Besl, P.J., McKay, N.D.: Method for registration of 3-D
shapes. Robotics-DL tentative pp. 586�606 (1992)

5. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovs-
janikov, M.: Shape google: Geometric words and expres-
sions for invariant shape retrieval. ACM Trans. on Graphics
(TOG) 30(1), 1 (2011)

6. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse
points matching by combining 3d mesh saliency with sta-
tistical descriptors. Computer Graphics Forum 27(2), 643�
652 (2008)

7. Darom, T., Keller, Y.: Scale-invariant features for 3-d mesh
models. IEEE Trans. on Image Processing 21(5), 2758�
2769 (2012)

8. Dubrovina, A., Kimmel, R.: Matching shapes by eigende-
composition of the Laplace-Beltrami operator. Proc. of 3D

Data Processing, Visualization and Transmission (3DPVT)
2(3) (2010)

9. Fehr, J., Streicher, A., Burkhardt, H.: A bag of features
approach for 3D shape retrieval. In: Advances in Visual
Computing, pp. 34�43. Springer (2009)

10. Flitton, G.T., Breckon, T.P., Bouallagu, N.M.: Object
recognition using 3D SIFT in complex CT volumes. Proc. of
the British Machine Vision Conf. (BMVC) pp. 1�12 (2010)

11. Furuya, T., Ohbuchi, R.: Dense sampling and fast encoding
for 3D model retrieval using bag-of-visual features. Proc.
of the ACM Int. Conf. on Image and Video Retrieval p. 26
(2009)

12. Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape
analysis using the auto di�usion function. Computer
Graphics Forum 28(5), 1405�1413 (2009)

13. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: 3d
object recognition in cluttered scenes with local surface fea-
tures: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence 36(11), 2270�2287 (2014)

14. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok,
N.M.: A comprehensive performance evaluation of 3d local
feature descriptors. International Journal of Computer Vi-
sion pp. 1�24 (2015)

15. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rota-
tional projection statistics for 3d local surface description
and object recognition. International journal of computer
vision 105(1), 63�86 (2013)

16. Harris, C., Stephens, M.: A combined corner and edge de-
tector. Alvey Vision Conf. 15, 50 (1988)

17. Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3d object recog-
nition from range images using local feature histograms.

18 Zahra Toony et al.

3D model
3D-NCuts

segmentation
result

Primitives with their values

C = 0, d = 1 C = 0, d = 1 C = 0, d = 1
Plane Plane Plane

C = 0, d = 1 C = 0, d = 0.0013 C = 0, d = 3.7 × 10−4
Plane Cylinder Cylinder

C = 0, d = 1 C = 0, d = 1 C = 0, d = 1 C = 0, d = 1
Plane Plane Plane Plane

C = 0, d = 3 × 10−14 C = 0.8454, S = 10.226 C = 0, d = 2.8 × 10−14
Cylinder Torus Cylinder

Fig. 17: Primitive detection using our approach for the segments of two complex models.

Proc. of IEEE Computer Society Conf. on Computer Vi-
sion and Pattern Recognition(CVPR) 2, II�394 (2001)

18. Hoppe, H.: Progressive meshes. Proc. of the 23rd Annual
Conf. on Computer Graphics and Interactive Techniques
pp. 99�108 (1996)

19. Johnson, A.E.: Spin-images: a representation for 3-D sur-
face matching. Ph.D. thesis, Citeseer (1997)

20. Johnson, A.E., Hebert, M.: Using spin images for e�cient
object recognition in cluttered 3d scenes. IEEE Trans. on
Pattern Analysis and Machine Intelligence 21(5), 433�449
(1999)

21. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation
invariant spherical harmonic representation of 3D shape
descriptors. Proc. of Eurographics/ACM SIGGRAPH Sym.
on Geometry processing pp. 156�164 (2003)

22. Kin-Chung Au, O., Tai, C.L., Cohen-Or, D., Zheng, Y.,
Fu, H.: Electors voting for fast automatic shape correspon-
dence. Computer Graphics Forum 29(2), 645�654 (2010)

23. Knopp, J., Prasad, M., Van Gool, L.: Orientation invariant
3D object classi�cation using hough transform based meth-
ods. Proc. of the ACM Workshop on 3D Object Retrieval
pp. 15�20 (2010)

24. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool,
L.: Hough transform and 3D SURF for robust three dimen-
sional classi�cation. In: 11th European Conf. on Computer
Vision (ECCV), pp. 589�602. Springer (2010)

25. Litman, R., Bronstein, A.M., Bronstein, M.M.: Di�usion-
geometric maximally stable component detection in de-
formable shapes. Computers & Graphics 35(3), 549�560
(2011)

26. Lowe, D.G.: Distinctive image features from scale-invariant
keypoints. Int. Journal of Computer Vision 60(2), 91�110
(2004)

27. Maes, C., Fabry, T., Keustermans, J., Smeets, D., Suetens,
P., Vandermeulen, D.: Feature detection on 3D face surfaces
for pose normalisation and recognition. 4th IEEE Int. Conf.
on Biometrics: Theory Applications and Systems (BTAS)
pp. 1�6 (2010)

28. Mans�eld, M., O'Sullivan, C.: Understanding physics. John
Wiley & Sons (2012)

29. Mian, A., Bennamoun, M., Owens, R.: On the repeatability
and quality of keypoints for local feature-based 3d object
retrieval from cluttered scenes. Int. Journal of Computer
Vision 89(2-3), 348�361 (2010)

30. Mohamad, M.: 3D object recognition using local shape de-
scriptors. Technical Report No. 2013-614 (2013)

31. Murase, H., Nayar, S.K.: Visual learning and recognition
of 3-D objects from appearance. Int. Journal of Computer
Vision 14(1), 5�24 (1995)

32. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient
local visual features for shape-based 3D model retrieval.
IEEE Int. Conf. on Shape Modeling and Applications pp.
93�102 (2008)

33. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape
distributions. ACM Transactions on Graphics (TOG)
21(4), 807�832 (2002)

34. Paquet, E., Rioux, M., Murching, A., Naveen, T.,
Tabatabai, A.: Description of shape information for 2-D
and 3-D objects. Signal Processing: Image Communication
16(1), 103�122 (2000)

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator 19

35. Peyré, G.: Toolbox Graph. http://www.mathworks.com/
matlabcentral/fileexchange/5355-toolbox-graph/
(2004). [Online; accessed June-2004]

36. Rabbani, T., Van Den Heuvel, F.: E�cient Hough trans-
form for automatic detection of cylinders in point clouds.
Proc. of ISPRS Workshop on Laser Scanning 3, 60�65
(2005)

37. Ruggeri, M.R., Patanè, G., Spagnuolo, M., Saupe, D.:
Spectral-driven isometry-invariant matching of 3d shapes.
Int. Journal of Computer Vision 89(2-3), 248�265 (2010)

38. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift de-
scriptor and its application to action recognition. Proc. of
the 15th Int. Conf. on Multimedia pp. 357�360 (2007)

39. Selinger, A., Nelson, R.C.: A perceptual grouping hierar-
chy for appearance-based 3d object recognition. Computer
Vision and Image Understanding 76(1), 83�92 (1999)

40. Semechko, A.: Particle sample sphere code for
uniform tessellation of a unit sphere:. http:
//www.mathworks.com/matlabcentral/fileexchange/
37004-uniform-sampling-of-a-sphere (2012). [Online;
accessed June-2012]

41. Shang, L., Greenspan, M.: Real-time object recognition in
sparse range images using error surface embedding. Int.
Journal of Computer Vision 89(2-3), 211�228 (2010)

42. Sipiran, I., Bustos, B.: A robust 3d interest points detector
based on harris operator. Eurographics Workshop on 3D
Object Retrieval 1, 7�14 (2010)

43. Sivic, J., Zisserman, A.: Video google: E�cient visual
search of videos. In: Toward Category-Level Object Recog-
nition, pp. 127�144. Springer (2006)

44. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably
informative multi-scale signature based on heat di�usion.
Computer Graphics Forum 28(5), 1383�1392 (2009)

45. Teichman, A., Levinson, J., Thrun, S.: Towards 3D ob-
ject recognition via classi�cation of arbitrary object tracks.
IEEE Int. Conf. on Robotics and Automation (ICRA) pp.
4034�4041 (2011)

46. Tombari, F., Salti, S., Di Stefano, L.: Performance eval-
uation of 3d keypoint detectors. International Journal of
Computer Vision 102(1-3), 198�220 (2013)

47. Toony, Z., Laurendeau, D., Gagné, C.: PGP2X: Principal
geometric primitives parameters extraction. to appear in
Proc. of the 10th Int. Conf. on Computer Graphics Theory
and Applications (GRAPP) (2015)

48. Toony, Z., Laurendeau, D., Giguère, P., Gagné, C.: 3D-
NCuts: Adapting normalized cuts to 3D triangulated sur-
face segmentation. Proc. of the 9th Int. Conf. on Computer
Graphics Theory and Applications (GRAPP) (2014)

49. Wahl, E., Hillenbrand, U., Hirzinger, G.: Sur�et-pair-
relation histograms: a statistical 3D-shape representation
for rapid classi�cation. 3-D Digital Imaging and Model-
ing, 2003. 3DIM 2003. Proceedings. Fourth International
Conference on pp. 474�481 (2003)

50. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface
feature detection and description with applications to mesh
matching. IEEE Conf. on Computer Vision and Pattern
Recognition(CVPR) pp. 373�380 (2009)

51. Zhang, C., Chen, T.: E�cient feature extraction for 2D/3D
objects in mesh representation. Proc. of Int. Conf. on Image
Processing 3, 935�938 (2001)

52. Zhang, J., Cao, J., Liu, X., Wang, J., Liu, J., Shi, X.: Point
cloud normal estimation via low-rank subspace clustering.
Computers & Graphics 37(6), 697�706 (2013)

53. Zhu, K., Wong, Y.S., Loh, H.T., Lu, W.F.: 3D CAD model
retrieval with perturbed laplacian spectra. Computers in
Industry 63(1), 1�11 (2012)

http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph/
http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph/
http://www.mathworks.com/matlabcentral/fileexchange/37004-uniform-sampling-of-a-sphere
http://www.mathworks.com/matlabcentral/fileexchange/37004-uniform-sampling-of-a-sphere
http://www.mathworks.com/matlabcentral/fileexchange/37004-uniform-sampling-of-a-sphere

20 Zahra Toony et al.

3D scanned model Normals on the Gaussian
Sphere

Number of
Vertices C Value d or Skewness

Value

530 C = 0 d = −0.9737

868 C = 0 d = 0

11213 C = 0 d = −0.2349

10238 C = 0 d = 0.5011

96368 C = 0.9794 S = −0.7569

13306 C = 0.3633 S = −0.6538

96221 C = 0.9746 S = 6.8488

21357 C = 0.9033 S = 2.4912

6095 C = 0.9207 S = 7.9608

Fig. 18: Primitive detection using our approach for real scanned models.

	Introduction
	Related Work
	Proposed Method
	Conclusion

